egéf SNS COLLEGE OF TECHNOLOGY Ao

Coimbatore-35.
An Autonomous Institution

COURSE NAME : 19CST101 PROGRAMMING FOR PROBLEM SOLVING
| YEAR/ | SEMESTER
UNIT-1V FUNCTIONS AND POINTERS

Topic: Functions

Mr. Selvakumar N
Assistant Professor
Department of Computer Science and Engineering

sﬁrv N -

e Functions A

User-defined function

You can also create functions as per your need. Such functions created by the user are

known as user-defined functions.

The execution of a C program begins from the main() function.

When the compiler encounters functionName(); , control of the program jumps to
vold functionName()

And, the compiler starts executing the codes inside functionName() .

The control of the program jumps back to the main() function once code inside the function

definition is executed.

Functions / 19CST101-Programming for Problem Solving /Selvakumar N/CSE/SNSCT

-

Functions S ! S

How user-defined function works?

#include <stdio.h>
vold functionName()

{
t
int main()
{
functionName():
Y

19/02/2021 Functions / 19CST101-Programming for Problem Solving /Selvakumar N/CSE/SNSCT

e

Y v i 2
o Functions 515

Advantages of user-defined function
1. The program will be easier to understand, maintain and debug.
2. Reusable codes that can be used in other programs

3. Alarge program can be divided into smaller modules. Hence, a large project can be

divided among many programmers.

19/02/2021 Functions / 19CST101-Programming for Problem Solving /Selvakumar N/CSE/SNSCT

:\Y; Fu nCtiOnS \:”fyr/a:
ELEMENTS OF USER-DEFINED FUNCTIONS

» Function declaration or prototype - informs compiler about
the function name, function parameters and return value’s
data type.

» Function call - This calls the actual function
» Function definition - This contains all the statements to be

executed.
R
1 Function definition return_type function_name(arguments list)
{ Body of function; }
2 function call function_name (arguments list);
3 function declaration ;’eturn_type function_name (argument list

19/02/2021 Functions / 19CST101-Programming for Problem Solving /Selvakumar N/CSE/SNSCT

Functions D! S
ELEMENTS OF USER-DEFINED FUNCTIONS

» There are three elements related to functions
Function definition
Function call
Function declaration

» The function definition is an independent program
module that is specially written to implement the
requirements of the function

» To use this function we need to invoke it at a required
place in the program. This is known as the function call.

» The program that calls the function is referred to as the
calling program or calling function.

» The calling program should declare any function that is
to be used later in the program. This is known as the
mfunction declaration or function prototype.

Functions / 19CST101-Programming for Problem Solving /Selvakumar N/CSE/SNSCT

FUNCTION DECLARATION

Like variables, all functions in a C program must be declared, before they are invoked.

A function declaration (also known as function prototype) consists of four parts.
» Function type (return type).
» Function name.
» Parameter list.
» Terminating semicolon.
They are coded in the following format:
» Function-type function-name (parameter list);
This is very similar to the function header line except the terminating semicolon.
For example, mul function defined in the previous section will be declared as:
» int mul (int m, int n); /* Function prototype */

LG rIrurons

-~ = X [

-2 R <,
C¢ B

FUNCTION DECLARATION

Points to Note

1. The parameter list must be separated by commas.

2. The parameter names do not need to be the same in the prototype declaration and the function
definition.

3. The types must match the types of parameters in the function definition, in number and
order.

4. Use of parameter names in the declaration is optional.

5. If the function has no formal parameters, the list is written as (void).

6. The return type is optional, when the function returns int type data.

7. The retype must be void if no value is returned.

8. When the declared types do not match with the types in the function definition, compiler will
produce an error.

N %
Xy E
C A,)

FUNCTION DECLARATION

A prototype declaration may be placed in two places in a program.

1. Above all the functions (including main).

2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration section), the prototype is
referred to as a global prototype.

Such declarations are available for all the functions in the program.

When we place it in a function definition (in the local declaration section), the prototype is called a local
prototype.

Such declarations are primarily used by the functions containing them.

The place of declaration of a function defines a region in a program in which the function may be used by other
functions.

This region is known as the scope of the function.

It is a good programming style to declare prototypes in the global declaration section before main.

It adds flexibility, provides an excellent quick reference to the functions used in the program, and enhances
documentation.

:‘ .Q nx‘ "i‘j‘
C ¢ B
C A~)

Prototypes: Yesor No
Prototype declarations are not essential.
If a function has not been declared before it is used, C will assume that its details available at the time of
linking.
Since the prototype is not available, C will assume that the return type is an integer and that the types of
parameters match the formal definitions.
If these assumptions are wrong, the linker will fail and we will have to change the program.
The moral is that we must always include prototype declarations, preferably in global declaration section.
Parameters Everywherel
Parameters (also known as arguments) are used in following three places:
1. in declaration (prototypes),
2. In function call, and
3. in function definition.
The parameters used in prototypes and function definitions are called formal parameters and those
used in function calls are called actual parameters.
Actual parameters used in a calling statement may be simple constants, variables, or expressions.
The formal and actual parameters must match exactly in type, order and number.

FUNCTION DECLARATION

Their names however, do not need to match.

o¢ ﬁé’ |
w7z CATEGORY OF FUNCTIONS
» Afunction, depending on whether arguments are present or not and whether a value

IS returned or not, may belong to one of the following categories:

Category 1: Functions with no arguments and no return values.
Category 2: Functions with arguments and no return values.
Category 3: Functions with arguments and one return value.
Category 4: Functions with no arguments but return a value.
Category 5: Functions that return multiple values.

ahkhwbdE

3 gﬁ;‘? ‘
%> NoArguments and No Return Values

» When a function has no arguments, it does not receive any data from the calling
function.

» Similarly, when it does not return a value, the calling function does not receive any
data from the called function.

» In effect, there is no data transfer between the calling function and the called
function.

» This is depicted in Fig.

» The dotted lines indicate that there is onlv a transfer of control but not data.

control
function1() F 4 funetion2 ()
[No input
function2() |} |
) __Nooutput |
| A '
control

Fig. 11.3 No data communication between funcfions

50 ~ 8 -
&5 > A

ce ST
7~ Arguments But No Return Values ——

» The actual and formal arguments should match in number, type, and order.
» The values of actual arguments are assigned to the formal arguments on a one to
one basis, starting with the first argument as shown in Fig

function1 () Values function 2 (f) Function | ----—---
{ of arguments | e call

L |
—
=
=
3
"
_—.
o
=
—
—_—

o

—

jat]

M
-

o

Lad

functionl (f1, f2, f3, - , fn)

.
__________________ Noreturnvalue | ... Called formal arguments
} } function—— ‘{

One-way data communication }

Arguments matching between the function call and the called function

Arguments with Return
Values

function1 () Values function 2 (f)
{ of arguments {

—

return (e)

}

Two-way data communication between functions

Function result

No Arguments But Returns a Value T

1. There could be occasions where we may need to design functions that may not take any
arguments but returns a value to the calling function.

2. Atypical example is the getchar function declared in the header file <stdio.h>.

3. We have used this function earlier in a number of places.

4. The getchar function has no parameters but it returns an integer type data that represents
a character.

» We can design similar functions and use n our programs.

» Example _ _
Int get_number(void); main

{

Int m = get_number(); printf(“%d”,m);

}

Int get_number(void)

{

Int number; scanf(“%d”, &number); return(number);

}

@
TS NESTING OF
» C permits nesting of FUNCTIONS
functions freely.
» main can call functionl,
which calls function2,
which calls function3,
.......... and so on.
» There is in principle no
limit as to how deeply
functions can be nested.

float ratio (int x, int y, int z);
int difference (int x, int y);
main()

{
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
printf("%f \n", ratio(a,b,c));
}

float ratio(int x, int y, int z)
{
if(difference(y, z))
return(x/(y-z});
else
return(0.0);

}
int difference(int p, int q)

{
if(p t= q)
return (1):
else
return(0);

» A
LU TIons

o .
>
T rons

	Slide 1
	Slide 2: Functions
	Slide 3: Functions
	Slide 4: Functions
	Slide 5: Functions
	Slide 6: Functions
	Slide 7: FUNCTION DECLARATION
	Slide 8: FUNCTION DECLARATION
	Slide 9: FUNCTION DECLARATION
	Slide 10: FUNCTION DECLARATION
	Slide 11: CATEGORY OF FUNCTIONS
	Slide 12: No Arguments and No Return Values
	Slide 13: Arguments But No Return Values
	Slide 14: Arguments with Return Values
	Slide 15: No Arguments But Returns a Value
	Slide 16: NESTING OF FUNCTIONS
	Slide 17

