

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE-35



#### **DEPARTMENT OF CIVIL ENGINEERING**

### 19CET307 – FOUNDATION ENGINEERING III YEAR / VI SEMESTER

### **Unit 5- GROUND IMPROVEMENT TECHNIQUES**

### **Topic : MECHANICAL COMPACTION**



# **Mechanical Compaction**



• A simple ground improvement technique, where the soil is densified through external compactive effort.

Compactive effort





# **Mechanical Compaction**



## **Compaction of Soil:**

- > Expulsion of air from the voids
- Reduce Settlement
- Increase stability of slopes

## **Applications:**

Highway railway embankments, earthen dams etc...



1.Increases shear strength
2.Reduces compressibility
3.Reduces permeability
4.Reduces liquefaction potential
5.Controls swelling and shrinking
6.Prolongs durability

- Strategies for compaction process are
- In the case of constructed fills, specify placement conditions
- (water content, density, depth of layers, etc.)
- Select appropriate equipment (roller compactor, tamping) and method of operation (number of passes, patterns of tamping,etc.).
- Set up adequate control procedures (type and number of tests, statistical evaluation, etc.).



**Compaction Process** 



- to obtain the compaction curve and define the optimum water content and maximum dry density for a specific compactive effort.

### Proctor:

- 3 layers
- 25 blows per layer
- 2.7 kg hammer
- 300 mm drop



## Modified Proctor:

- 5 layers
- 25 blows per layer
- 4.9 kg hammer
- 450 mm drop

1000 ml compaction mould



Water content





563kN/m<sup>2</sup>

 $2530 \text{ kN/m}^2$ 









## i) Sheet Foot Rollers





## ii) Roller Compaction







## iii) Rubber Tyred Roller







# iv) Dynamic Roller Compaction:





# v) Dynamic Compaction:







# vii) Rapid Dynamic Compaction:







**Relative Compaction:** 



$$R(\%) = (\Upsilon_d \text{ field} / \Upsilon_{d \max} \text{ lab}) \times 100$$

# Factors affecting Compaction:

- Type of soil
- Moisture Content
- Compactive effort
- Method of compaction
- Degree of Saturation
- Presence of Organic matter