

SNS COLLEGE OF TECHNOLOGY

5

DEPARTMENT OF MATHEMATICS
Euler's method:

$$y_{n+1} = y_n + h f(x_n, y_n)$$
, $n = 0, 1, 2, ...$
Modified Euler's method:
 $y_{n+1} = y_n + \frac{1}{2} h \left[f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right) \right]$
Improved Euler's method:
 $y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_n + h, y_n + h(x_n, y_n)) \right]$
Problems:
() Using Euler's method find the solution of the initial
value problem $\frac{dy}{dx} = \log (x+y)$, $y(0) = 2$ at $x = 0.2$
by assuming $h = 0.2$.
Solution:
Given: $f(x, y) = \log (x+y)$
 $x_0 = 0$, $y_0 = 2$, $x_1 = 0.2$, $h = 0.2$
 $y_{n+1} = y_n + h f(x_n, y_n)$
For $n = 0$, $y_1 = y_0 + h f(x_0, y_0)$
 $= 2 + (0.2) \log (n + 2)$
 $= 2 + (0.2) \log (n + 2)$
 $= 2 + (0.2) (0.3010)$
 $y_1 = 2.0602$
i.e., $y(0.2) = 2.0602$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

(2) Using Euler's method find y (0.2) and y (0.4) from $\frac{dy}{dx} = x + y$, y(0) = 1 with h = 0.2Solution : Given: f(x,y) = x+y $x_0 = 0$, $y_0 = 1$, h = 0.2 $x_1 = 0.2$, $y_1 = ?$ $\chi_2 = 0.4$, $y_2 = ?$ By Euler's formula, $y_{n+1} = y_n + h f(x_n, y_n)$ $y_1 = y_0 + h f(x_0, y_0)$ $= 1 + (0.2) (\chi_{0} + Y_{0})$ = 1 + (0.2)(0+1)y(0.2) = 1.2 $y_2 = y_1 + h + f(x_1, y_1)$ = 1.2 + (0.2) (2, + y,)= 1.2 + (0.2) (0.2 + 1.2) $= 1 \cdot 2 + 0 \cdot 28$ y(0.4) = 1.48 3 Compute y at x = 0.25 by modified Euler method given y' = axy, y(0) = 1Solution : Given: $x_0 = 0$, $y_0 = 1$ $\chi_1 = 0.25, \ y_1 = ?$ h = 0.25

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

(3)

$$f(x, y) = axy$$
By modified Euler's method.

$$y_{n+1} = y_n + h \left[f\left(x_n + \frac{h}{a}, y_n + \frac{h}{a}, f(x_n, y_n)\right) \right]$$

$$y_1 = y_0 + h f\left(x_0 + \frac{h}{a}, y_0 + \frac{h}{a}, f(x_0, y_0)\right)$$

$$= 1 + (0.25) f\left(0 + \frac{0.25}{2}, 1 + \frac{0.25}{2}, f(0, 1)\right)$$

$$= 1 + (0.25) f\left(0.125, 1 + (0.125)(0)\right)$$

$$= 1 + (0.25) f\left(0.125, 1\right)$$

$$= 1 + (0.25) \left(2x \times 0.125 \times 1\right)$$

$$\frac{y(0.25) = 1.0625}{2}$$
By modified Euler's method, Compute $y(0.1)$ with

$$h = 0.1 \text{ from } y' = y - \frac{ax}{y}, y(0) = 1$$
Solution:
Given: $x_0 = 0, y_0 = 1, h = 0.1$
 $x_1 = 0.1$
 $f(x_1y) = y - \frac{2x}{y}$
By modified Euler's method,
 $y_{n+1} = y_n + h f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right)$
 $y_1 = y_0 + h f\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f(x_0, y_0)\right)$

$$= 1 + (0.1) f\left(0 + \frac{0.1}{2}, 1 + \frac{0.1}{2}f(0, 1)\right)$$

$$= 1 + (0.1) f\left(0.05 + 1.05\right)$$

$$= 1 + 0.1 (0.95 + 8.)$$

16MA202 & Statistics and Numerical Methods