SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35
Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

19EET208 / DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS II YEAR / IV SEMESTER UNIT-IV: OPERATIONAL AMPLIFIER

OP-AMP BASICS AND CHARACTERISTICS

TOPIC OUTLINE

What is an Op-Amp?

History
Pin Details IC741
Characteristics of Ideal Op-Amps Characteristics of Real Op-Amps
Basics of Op-Amp
Inv and Non Inv Op-Amp Circuits

WHAT IS AN OP-AMP?

- An Operational Amplifier (known as an "Op-Amp") is a device that is used to amplify a signal using an external power source
- Op-Amps are generally composed of:
- Transistors, Resistors, Capacitors

BRIEF HISTORY

- First Commercial Op-Amp available (1953)

- First discrete IC Op-Amps (1961)

- First commercially successful Monolithic Op-Amps (1965)

IC741 - PIN DETAILS

- Leading to the advent of the modern IC which is still used even today (1967 - present)

Fairchild $\mu \mathrm{A} 741$

AN IDEAL OP-AMP

- Infinite voltage gain
- Infinite input impedance
- Zero output impedance
- Infinite bandwidth
- Zero input offset voltage (i.e., exactly zero out if zero in).

IDEAL VERSUS REAL OP-AMPS Sis

Parameter	Ideal Op-Amp	Real Op-Amp
Voltage Gain	∞	$10^{5}-10^{9}$
Gain Bandwidth (Hz)	∞	$1-20 \mathrm{MHz}$
Input Resistance (Ri)	∞	$10^{6}-10^{12} \Omega$
Output Resistance (Ro)	0	$100-1000 \Omega$

BASICS OF AN OP-AMP

- An op-amp amplifies the difference of the inputs V_{+}and $\mathrm{V}_{\text {- }}$ (known as the differential input voltage)
- This is the equation for an open loop gain amplifier:

$$
V_{\text {out }}=K\left(V_{+}-V_{-}\right)
$$

- K is typically very large - at around 10,000 or more for IC Op-Amps
- This equation is the basis for all the types ofamps we will be discussing

BASICS OF AN OP-AMP

A traditional Op-Amp:

$$
\begin{aligned}
& \mathrm{V}_{+}: \text {non-inverting input } \\
& \mathrm{V}_{-} \quad \text { : inverting input } \\
& \mathrm{V}_{\text {out }} \text { : output } \\
& \mathrm{V}_{\mathrm{s+}} \text { : positive power supply } \\
& \mathrm{V}_{\mathrm{s-}} \text { : negative power supply } \\
& \mathrm{V}_{\text {out }}=\mathrm{K}\left(\mathrm{~V}_{+}-\mathrm{V}_{-}\right)
\end{aligned}
$$

- The difference between the two inputs voltages (V_{+}and V_{-}) multiplied by the gain (K , "amplification factor") of the Op-Amp gives you the output voltage
- The output voltage can only be as high as the difference between the power supply ($\mathrm{V}_{\mathrm{s}+} / \mathrm{V}_{\mathrm{s}-}$) and ground (0 Volts)

Saturation

Saturation is caused by increasing/decreasing the input voltage to cause the output voltage to equal the power supply's voltage*

Points

Open Loop vs Closed Loop

- A closed loop op-amp has feedback from the output to the input, an open loop op-amp does not

Open Loop

Closed Loop

NON-INVERTING OP-AMP

- Amplifies the input voltage by a constant
- Closed loop op-amp
- Voltage input connected to non-inverting input
- Voltage output connected to inverting
 input through a feedback resistor
- Inverting input is also connected to ground
- Non-inverting input is only determined by voltage output

NON-INVERTING OP-AMP

$$
V_{o}=K\left(V_{+}-V_{-}\right) \& R_{2}=R_{f}
$$

R1/(R1+R2) \leftarrow Voltage Divider

$$
V_{i}=V_{o}\left(R_{1} /\left(R_{1}+R_{2}\right)\right)
$$

$$
\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=\mathrm{Acl}=\left[1+/\left(\mathrm{R}_{2}+\mathrm{R}_{1}\right)\right]
$$

$$
V_{\text {out }}=V_{\text {in }}\left(1+\left(R_{2} / R_{1}\right)\right)
$$

INVERTING OP-AMP

- Amplifies and inverts the input voltage
- Closed loop op-amp
- Non-inverting input is determined by both voltage input and output
- The polarity of the output voltage is opposite to that of the input voltage
- Voltage input is connected to inverting input
- Voltage output is connected to inverting input through a feedback resistor
- Non-inverting input is grounded

INVERTING OP-AMP

$$
V_{\text {out }}=K\left(V_{+}-V_{-}\right)
$$

Nodal equation at "a" (jn) is

$$
\left.\left.0=\left(\left(V_{a}-V_{i}\right) / R_{i}\right)\right)+\left(\left(V_{a}-V_{o}\right) / R_{f}\right)\right)
$$

Since $V_{a}=$ is virtual gnd $=0$

$$
\begin{aligned}
& \left.\left.0=\left(\left(0-V_{i}\right) / R_{i}\right)\right)+\left(\left(0-V_{o}\right) / R_{f}\right)\right) \\
& V_{o} / V_{i}=-R_{f} / R_{i}=A c l
\end{aligned}
$$

$$
V_{\text {out }}=-V_{\text {in }} R_{f} / R_{\text {in }}
$$

