SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

Series, Parallel, and Series-Parallel Circuits

UNIT I

Reviesw:

Bassic: Hepmeetistyfod GiCainituit

- An electric circuit provides a complete path for current to flow
- A basic circuit must include:
- Power Source (battery)
- Complete Path (wires)
- Load (resistor, light, motor, etc.)
- Many circuits also include:
- Control Devices (switch, etc.)
- Protective Devices (fuse, circuit breaker, etc)

What components does the circuit below include? Answer: Load, Path, Source, \& Control

Types of Circuits

- Circuits with multiple loads can be placed into one of three categories: Series, Parallel, \& SeriesParallel
- These are based on paths of current flow through the circuit

Series Circuits

- Only allow current to flow through one path from - to + through the loads
- Current only has one way to go from one side of the power source to the other

Parallel Circuits

- Allows current to take Multiple Paths from - to + through the loads.
- Current can follow different routes from the source, through the loads, and back to the source

Series-Parallel Circuits

- Contains areas of both Series \& Parallel circuits
- Some sections allow multiple paths for current flow
- Other areas only allow one path for current flow
- Must have at least three loads

Resistance Calculations

- Because some circuits allow current to follow multiple paths, current divides among these paths
- This reduces the total current of these sections
- Therefore, different resistance formulas must be used for different circuits

Series Circuit Calculations

- Only allow current to follow one path
- Total resistance is equal to the sum of all the individual resistances
- Formula Rt = R1 + R2 + R3...

$$
\begin{aligned}
& \mathrm{R} 1=10 \Omega \\
& \mathrm{R} 2=20 \Omega \\
& \mathrm{R} 3=30 \Omega \\
& \mathrm{Rt}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3 \\
& \mathrm{Rt}=10 \Omega+20 \Omega+30 \Omega \\
& \mathrm{Rt}=60 \Omega
\end{aligned}
$$

Parallel Circuit Calculations

- Allow current to follow Multiple Paths
- Current divides among paths
- Total resistance is always less than smallest resistor
- Resistance Formula: $\mathrm{Rt}=1 /[(1 / \mathrm{R} 1)+(1 / \mathrm{R} 2)+(1 / \mathrm{R} 3) . .$.
- This is Known as the Reciprocal Formula

$$
\begin{gathered}
\mathbf{R 1}=10 \Omega \mathbf{R 2}=20 \Omega \mathbf{R 3}=30 \Omega \\
R t=1 /[(1 / R 1)+(1 / R 2)+(1 / R 3)] \\
R t=1 /[(1 / 10)+(1 / 20)+(1 / 30)] \\
R t=1 /[.1+.05+.033] \\
\operatorname{Rt}=1 / .183 \\
\text { Rt }=5.45 \Omega
\end{gathered}
$$

Parallel Circuit Calculations (Only Two Resistors)

- If only Two resistors are in parallel, then another formula can also be used to calculate total resistance
- This formula is: $\mathbf{R t}=(R 1 \times R 2) /(R 1+R 2)$
- Total resistance is always less than smallest resistor

$$
\begin{gathered}
\mathbf{R 1}=20 \Omega \quad \mathbf{R 2}=20 \Omega \\
R t=(R 1 \times R 2) /(R 1+R 2) \\
\mathrm{Rt}=(20 \times 20) /(20+20) \\
\mathrm{Rt}=400 / 40 \\
\mathbf{R t}=10 \Omega
\end{gathered}
$$

Parallel Circuit Calculations

(All Resistors Are the Same)

- If all of the resistors in the circuit are equal, then this formula may be used:
- Rt = R / N ($\mathrm{N}=$ = Number of resistors/ loads)
- Total resistance is always less than smallest resistor

$$
\mathbf{R 1}=30 \Omega \quad \mathbf{R 2}=30 \Omega \quad \mathbf{R 2}=30 \Omega
$$

$$
\begin{aligned}
R t & =R / N \\
\mathrm{Rt} & =30 / 3 \\
\mathbf{R t} & =10 \Omega
\end{aligned}
$$

Series-Parallel Circuit Calculations

- Contain series \& parallel elements
- Must use series \& parallel formulas
- First determine Parallel R-value, then add to series sections

```
R1 = 10\Omega R2 = 10\Omega R3 = 10\Omega R4 = 10\Omega
Rt = (R1 x R2)/(R1 + R2)
Rt = (10 x 10) / (10 + 10)
Rt = 100 / 20
Rt=5\Omega
Rt = R1 + R2 + R3
Rt = 10\Omega+5\Omega+10\Omega
Rt=25\Omega
```


Calculating Total Resistance Flow Chart

Guided Practice \#1

- What kind of circuit is it?

Series Circuit

- What Formula can be used?

$$
\mathrm{Rt}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}
$$

- What is the total resistance?

$$
\begin{gathered}
\mathrm{R} 1=30 \Omega \\
\mathrm{R} 2=50 \Omega \\
\mathrm{R} 3=70 \Omega \\
\mathrm{Rt}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3 \\
\mathrm{Rt}=30 \Omega+50 \Omega+70 \Omega \\
\mathbf{R t}=150 \Omega
\end{gathered}
$$

Guided Practice \#2

- What kind of circuit is it?

Parallel Circuit

- What Formula can be used?

$$
\begin{aligned}
& \mathrm{Rt}=1 /[(1 / \mathrm{R} 1)+(1 / \mathrm{R} 2)+(1 / \mathrm{R} 3) \ldots] \\
& \text { or } \ldots \mathrm{Rt}=(\mathrm{R} 1 \times \mathrm{R} 2) /(\mathrm{R} 1+\mathrm{R} 2)
\end{aligned}
$$

- What is the total resistance?
$R 1=10 \Omega \quad R 2=20 \Omega$

$$
\begin{aligned}
R t & =(R 1 \times R 2) /(R 1+R 2) \\
\mathrm{Rt} & =(10 \times 20) /(10+20) \\
& \mathrm{Rt}=200 / 30
\end{aligned}
$$

$$
\mathbf{R t}=6.67 \Omega
$$

Guided Practice \#3

- What kind of circuit is it?

Series-parallel

- What Formula can be used?

$$
R t=(R 1 \times R 2) /(R 1+R 2) \& R t=R 1+R 2+R 3
$$

- What is the total resistance?

$$
\begin{aligned}
\mathbf{R} \mathbf{1} & =5 \Omega \mathbf{R} \mathbf{2}=4 \Omega \quad \mathbf{R} \mathbf{3}=6 \Omega \quad \mathbf{R} \mathbf{4}=5 \Omega \\
\mathrm{Rt} & =(R 1 \times R 2) /(R 1+R 2) \\
\mathrm{Rt} & =(4 \times 6) /(4+6) \\
\mathrm{Rt} & =24 / 10 \\
\mathrm{Rt} & =2.4 \Omega \\
\mathrm{Rt} & =\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3 \\
\mathrm{Rt} & =5 \Omega+2.4 \Omega+5 \Omega \\
\mathbf{R t} & =12.4 \Omega
\end{aligned}
$$

