

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Series, Parallel, and Series-Parallel Circuits

UNIT I

Review: Basic Hements of a Civituit

- An electric circuit provides a <u>complete path</u> for current to flow
- A basic circuit must include:
 - <u>Power Source</u> (battery)
 - <u>Complete Path</u> (wires)
 - <u>Load</u> (resistor, light, motor, etc.)
- Many circuits also include:
 - <u>Control Devices</u> (switch, etc.)
 - Protective Devices (fuse, circuit breaker, etc)

What components does the circuit below include? Answer: Load, Path, Source, & Control

Types of Circuits

 Circuits with multiple loads can be placed into one of three categories: <u>Series</u>, <u>Parallel</u>, & <u>Series</u>-<u>Parallel</u>

 These are based on <u>paths</u> of <u>current flow</u> through the circuit

Series Circuits

- Only allow current to flow through <u>one path</u> from to + through the loads
- Current only has one way to go from one side of the power source to the other

Parallel Circuits

- Allows current to take <u>Multiple Paths</u> from to + through the loads.
- Current can follow <u>different routes</u> from the source, through the loads, and back to the source

Series-Parallel Circuits

- Contains areas of both <u>Series</u> & <u>Parallel</u> circuits
- Some sections allow multiple paths for current flow
- Other areas only allow one path for current flow
- Must have at least three loads

Resistance Calculations

- Because some circuits allow current to follow multiple paths, current <u>divides</u> among these paths
- This <u>reduces</u> the total current of these sections
- Therefore, different <u>resistance formulas</u> must be used for different circuits

Series Circuit Calculations

- Only allow current to follow one path
- Total resistance is equal to the sum of all the <u>individual</u> resistances
- Formula Rt = R1 + R2 + R3...

$$R1 = 10\Omega$$

$$R2 = 20\Omega$$

$$R3 = 30\Omega$$

$$Rt = R1 + R2 + R3$$

$$Rt = 10\Omega + 20\Omega + 30\Omega$$

$$Rt = 60\Omega$$

Parallel Circuit Calculations

- Allow current to follow Multiple Paths
- Current divides among paths
- Total resistance is always <u>less</u> than smallest resistor
- Resistance Formula: Rt = 1/ [(1/R1)+(1/R2)+(1/R3)...]
 - This is Known as the Reciprocal Formula

R1 =
$$10\Omega$$
 R2 = 20Ω R3 = 30Ω
Rt = $1/[(1/R1)+(1/R2)+(1/R3)]$
Rt = $1/[(1/10)+(1/20)+(1/30)]$
Rt = $1/[.1+.05+.033]$
Rt = $1/.183$
Rt = 5.45Ω

Parallel Circuit Calculations (Only Two Resistors)

- If only <u>Two resistors</u> are in parallel, then another formula can also be used to calculate total resistance
- This formula is: $Rt = (R1 \times R2) / (R1 + R2)$
- Total <u>resistance</u> is always less than smallest resistor

$$\mathbf{R1} = 20\Omega \quad \mathbf{R2} = 20\Omega$$
 $Rt = (R1 \times R2) / (R1 + R2)$
 $Rt = (20 \times 20) / (20 + 20)$
 $Rt = 400 / 40$
 $\mathbf{Rt} = 10\Omega$

Parallel Circuit Calculations (All Resistors Are the Same)

- If <u>all</u> of the resistors in the circuit are <u>equal</u>, then this formula may be used:
 - Rt = R / N (N = Number of resistors/ loads)
- Total <u>resistance</u> is always less than smallest resistor

R1 =
$$30\Omega$$
 R2 = 30Ω **R2** = 30Ω
 $Rt = R / N$
Rt = $30 / 3$
Rt = 10Ω

Series-Parallel Circuit Calculations

- Contain series & parallel elements
- Must use <u>series</u> & <u>parallel</u> formulas
- First determine <u>Parallel</u> R-value, then add to <u>series</u> sections

R1 =
$$10\Omega$$
 R2 = 10Ω R3 = 10Ω R4 = 10Ω
Rt = $(R1 \times R2) / (R1 + R2)$
Rt = $(10 \times 10) / (10 + 10)$
Rt = $100 / 20$
Rt = 5Ω
Rt = $R1 + R2 + R3$

Rt = 100 + 50 + 100

Rt = 250

Calculating Total Resistance Flow Chart

Guided Practice #1

What kind of circuit is it?

Series Circuit

What Formula can be used?

$$Rt = R_1 + R_2 + R_3$$

What is the total resistance?

$$R1 = 30\Omega$$

$$R2 = 50\Omega$$

$$R3 = 70\Omega$$

$$Rt = R1 + R2 + R3$$

$$Rt = 30\Omega + 50\Omega + 70\Omega$$

$$\mathbf{Rt} = 150\Omega$$

Guided Practice #2

• What kind of circuit is it?

Parallel Circuit

• What Formula can be used?

Rt =
$$1/[(1/R1)+(1/R2)+(1/R3)...]$$

or ... Rt = $(R1 \times R2)/(R1 + R2)$

• What is the total resistance?

R1 =
$$10\Omega$$
 R2 = 20Ω
Rt = $(R1 \times R2) / (R1 + R2)$
Rt = $(10 \times 20) / (10 + 20)$
Rt = $200 / 30$
Rt = 6.67Ω

Guided Practice #3

• What kind of circuit is it?

Series-parallel

• What Formula can be used?

$$Rt = (R1 \times R2) / (R1 + R2) \& Rt = R1 + R2 + R3$$

• What is the total resistance?

$$R1 = 5\Omega$$
 $R2 = 4\Omega$ $R3 = 6\Omega$ $R4 = 5\Omega$

$$Rt = (R1 \times R2) / (R1 + R2)$$

$$Rt = (4 \times 6) / (4 + 6)$$

$$Rt = 24 / 10$$

$$Rt = 2.4\Omega$$

$$Rt = R1 + R2 + R3$$

$$Rt = 5\Omega + 2.4\Omega + 5\Omega$$

$$Rt = 12.4\Omega$$

