SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

DEPARTMENT OF AERONAUTICAL ENGINEERING

Subject Code \& Name: 19AST203 Aircraft Structural Mechanics

TOPIC: Bredt - Batho formula

Bredt-Batho formulae

The 1st Bredt-Batho formula indicates the relationship between the torsional moment MT acting on a thin-walled hollow tube, its enclosed area Am and the resultant shear flow $\mathrm{T} /$ shear stress t . It is calculated as follows: $\tau=\mathrm{Tt}=\mathrm{MT} 2 \cdot \mathrm{Am} \cdot \mathrm{t}$.

The variable t represents the thin-walled component's wall thickness. The enclosed area Am lies within the centre line of the tube and is also called the hollow area. The shear stress t resulting from the Torsion is constant over the entire wall thickness t, which means that the shear flow T also remains constant in the circumferential direction.

The 2nd Bredt-Batho formula indicates the component's twisting ϑ, which depends on the material's shear modulus G. A component's torsional Resistance I_{T} can also be determined.
The Bredt-Bredt-Batho formulae apply only to torsion acting on closed hollow tubes with an axis of Rotation that lies on the shear centre.

A beam with a closed section experiencing only a pure torque T and without any axial constraints, does not develop direct stresses, ie s $z=0$.

So equations (4.2) and (4.3) become:
$\frac{\partial q}{\partial s}=\frac{\partial q}{\partial z}=0$
The only way to satisfy these equations would be if the shear flow 'q' was constant.
NOTE: Although ' q ' is constant, the shear stress ' t ' may not be if the wall thickness ' t ' varied with 's'.

Figure 45: Closed beam with applied torque.

To determine the relationship between applied torque and shear flow, apply equilibrium to the end of the beam.

In essence the applied Torque T must equal to the torque generated by the shear flow.

Look at the end of beam, and a small section ds.

Figure 46: Equating applied torque with moment generated by shear flow.

The torque produced by the shear flow on element ds is pqsd s. Integrating about the whole section gives:
$T=\oint p q d s$
We have previously defined that:
$\oint p d s=2 \mathrm{~A}$
Therefore:

$$
\begin{equation*}
q=\frac{T}{2 A} \tag{5.1}
\end{equation*}
$$

Often referred to as the 'Bredt-Batho Formula'. Substituting this equation into (4.21) gives the rate of twist due to the Torque ' T ':
pet us suppose the origins whore the shear flow has unknown values q so action alt outtalk of
Then for closed section

$$
\begin{aligned}
& q_{s}=\frac{-\bar{S}_{x}}{I_{y y}} \int x t d s-\frac{\bar{S} y}{I x x} \int y t d s+q_{s, 0} \\
& q_{s}=q_{b}+q_{s, o} \\
& q_{s, 0}=-\frac{m}{2 A} \\
& M \rightarrow \text { unbalanced Moment } \\
& q_{b \rightarrow} \rightarrow \text { basic shear flow equation for open tube } \\
& q_{s, 0} \rightarrow \text { unknown shearflow equation at origin } \\
& \text { of is co-ordinates } \\
& \text { The value of shearflow at origin of 's' is }
\end{aligned}
$$ found by making a cut at that point and equating applied the initial moments taken abe Some convinionce point plot Shear flow for given closed Section.

Solve:
To Solve the above problem; make a cub, between stringes a and d to make it as open section.
 The soction 2 comes.

$$
\bar{x}=\frac{\sum A x}{\sum A}=\frac{160}{12}
$$

$$
\bar{x}=13.33
$$

$$
\bar{y}=\frac{\sum A y}{\sum A}=\frac{160}{12}
$$

$$
\bar{y}=13.33
$$

$$
I_{x x}=\sum I_{n}+\varepsilon A y^{2}-\varepsilon A \bar{y}^{2}
$$

$$
\begin{aligned}
& I_{x x}=4400-12(13.33)^{2} \\
& I_{x}=2267.74 \mathrm{~cm}^{4} \\
& \text { Iyy }=\text { ETEy }+\sum A x^{2}-\sum A \bar{x}^{2} \text { ar. . } \\
& I_{y y}=6400-12(13.33)^{2} \\
& I_{y y}=4267-73 \mathrm{~cm}^{4} \\
& I_{x y}=\sum A x y-\sum A \bar{x} \bar{y} . \\
& I x y=1600-12(13.33)(13.33) \\
& I_{x y}=-532.26 \mathrm{~cm}^{4} \\
& \bar{S} x=\frac{S x-S y \frac{I x^{2} y}{I x x}}{I^{2}} \quad S x=0 ; 5 y=1000 \\
& 1-\frac{I^{2} x y}{I x x I y y} \\
& S_{x}=0-\left[1000 \times \frac{(-532-26)}{2267.74}\right]+1.02 \cdot \operatorname{cin} 5 \\
& \therefore 0 p=1=\frac{(-532 \cdot 26)^{2}}{2267.74 \times 4267 \cdot 73}(14)=14.0-303 \\
& \bar{S}_{x}=241.71 \mathrm{~N} \\
& \bar{S}_{y}=\frac{S y-S x \frac{I x y}{I y y} 0(28.21 \rightarrow)(e) \geq 31.0 \cdots 1}{1} \\
& 1-\frac{I^{2} x y}{I_{x x} I_{y y}} \\
& S_{y}=\frac{1000-\left[0 \times \frac{(-532.26)}{2267.74}\right]}{1-\frac{(-532.26)^{2}}{(-5267.74 \times 4267.73}} \\
& 2267.74 \times 4267.73
\end{aligned}
$$

$$
\begin{aligned}
& q=\frac{-S_{y}}{I_{x x}} \sum A_{i} y_{i}-\frac{S_{x}}{I_{y y}} \\
& q=10-\frac{1030.18}{2267.74} \text { इAi Yi }-\frac{241.71}{4267.73} \text { \&Aixi } \\
& q=-0.45 \mathrm{sAi} y_{i}-0.05 \mathrm{\sum Aixi} \\
& q_{a b}=-0.45(4)(16.67)-0.05(4)(-13.33) \\
& q_{a b}=-30.27+3.017 \\
& q_{a b}=-27.26 \\
& q_{b c}=-0.45(4)(-13.33)-0.05(4)(-13.33)+q_{a b} \\
& q_{b c}=24.20+3.017-27.26 \\
& q_{b c}=0 \\
& q_{c d}=-0.45(2)(-13.83)-0.05(2)(26.67)+q_{6 c} \\
& q_{\text {cd }}=12.10-3.019+0 \quad 1 \\
& q_{c d}=9.05 \mathrm{~N} 1 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& q_{s}=q_{b}+q_{s, 0} \\
& q_{s, 0}=\frac{-M}{2 A} \\
& A=\frac{1}{2} \pi r^{2}+\frac{1}{2} \mathrm{bh} \\
& A=\left[\frac{1}{2} \times \pi \times 15^{2}+\frac{1}{2} \times(40 \times 10)+(40 \times 20)\right] \\
& A=1353.42 \mathrm{~cm}^{2} \\
& \text { Moment about }{ }^{\prime} \quad(\text { unbalanced Moment }) \\
& M=\left(-1000 \times 10-2\left(\frac{\pi r^{2}}{2}\right) \times 27.26\right) \\
& =10000-27.26 \times \pi \times 15^{2}+9.08 \times 800 \\
& =-2736-27.26 \times \pi \times 15^{2} \\
& M=-22004.95 \mathrm{~N} 1 \mathrm{~cm}^{2} \\
& q_{s, 0}=8.129 \mathrm{~N} 1 \mathrm{~cm} \\
& q_{s, 0}=q a d
\end{aligned}
$$

Shear flow of closed section

$$
\begin{align*}
& q_{s}=q_{b}+q_{s, 0} \\
& q_{a b}=-27.26+8.13 \\
& q_{a b}=-19.13
\end{align*}
$$

3-14 Torsional effect of Multicell tube: -
Assumption: -

1. Angle of twist is equaliforiall cells a

$$
\theta_{1}=\theta_{2}=\theta_{3}=\theta .
$$

$$
h o f=a, p
$$

2. Material is homogonoous

20 u, at $-\cos$
3. It obeys hooks law.
4. Boar is subjected to torque alone?
for single cell

$$
T=2 \mathrm{Aq}
$$

$$
\varepsilon 1 \cdot P!-=d \rho \rho
$$

