SNS COLLEGE OF TECHNOLOGY
Coimbatore-35
An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A++' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

## $16 G E 314$ CAREER DEVELOPMENT PROGRAMME II YEAR IV SEM <br> DEPARTMENT OF MECHANICAL ENGINEERING



BIE

## WHAT IS RELATIVE SPEED?

## Let's start with the first question



## RELATIVE SPEED

$X$ We can define relative speed as the speed of a moving body with respect to another
$X$ When two bodies are moving in the same direction, the relative speed is computed by their difference
$X$ But when to bodies are moving in the opposite direction, the relative speed is calculated by adding the speed of both the bodies
$X$ The difference between relative speed and relative velocity is that relative speed is the scalar quantity whereas relative velocity is the vector quantity.

## How to calculate relative speed?

X Suppose two bodies are moving at a different speed in the same direction.
$X$ Let the speed of 1st body be " $x$ " km/hr
$X$ And the speed of the 2nd body be " $y$ " $\mathrm{km} / \mathrm{hr}$.
$X$ So, their relative speed is $=(x-y) \mathrm{km} / \mathrm{hr}[x>y]$
$X$ The time after which both the bodies meet = distance travelled / relative speed $=d \mathrm{~km} /[x-y]_{\mathrm{km}} / \mathrm{hr}$
$X$ Suppose, time $=$ thrs.
$X$ Then, the distance covered in ' t ' hours = relative speed * time
$x=(x-y) \mathrm{km} / \mathrm{hr} *$ thrs.

## TRAIN PROBLEMS

X Train Problems form an interesting portion of the time-distance problems
X The Train Problems are a bit different than the regular problems on the motion of the objects
$X$ This is due to the finite size of the trains
X As a result of the length of the trains, many interesting train problems originate

## EXAMPLE

X Gita rows a boat at a speed of 15 kmph upstream and 20 kmph downstream.
Find the Speed with which Gita rows the boat in still water and also find the Speed of the stream.
Solution:
$X$ Given that upstream Speed $=15 \mathrm{kmph}$
$X$ Downstream Speed $=20 \mathrm{kmph}$
$X$ Speed of Gita in still water $=x=[\{a+b]\} / 2=[20+15] / 2=35 / 2$
Speed of stream $=y=\{(a-b]\} / 2=[20-15] / 2=5 / 2$.

## EXAMPLE

$X$ The Speed of Narmada river is 5 kmph . A stationary body is placed in the river. Find the Time taken by the floating body to reach a stone which is 10
km downstream from the point where it is now?
Solution:
$X$ Speed of body = Speed of river (as Speed of boy is 0 ) $=5 \mathrm{kmph}$
$X$ Speed=Distance/Time.
So, Time taken to reach $10 \mathrm{~km}=10 / 5=2$ hours.

## EXAMPLES

$X$ Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:
$X$ AJ2:3
B) 3:2
C) 1:3
DJ 3:1

## SOLUTION

Answer: Let the speeds of the two trains be $=\mathrm{x} \mathrm{m} / \mathrm{s}$ and $\mathrm{y} \mathrm{m} / \mathrm{s}$
respectively. Then, the length of the first train $=27 \times$ meters, and length of
the second train $=17 \mathrm{y}$ meters.
We can write:
$(27 x+17 y) /(x+y)=23$

Or $27 x+17 y=23 x+23 y$, therefore we have: $4 x=6 y$
and $[x / y]=[3 / 2]$. Hence the correct option here is $B]$ 3:2

## EXAMPLES

$X$ Walking A train 360 m long is running at a speed of $45 \mathrm{~km} / \mathrm{hr}$. In what time will it pass a bridge 140 m long?
$X$ AJ20s
B] 30 s
C) 40 s
DJ 50 s

## SOLUTION

Answer: We have already seen the formula for converting from $\mathrm{km} / \mathrm{hr}$ to $\mathrm{m} / \mathrm{s}: \mathrm{xkm} / \mathrm{hr}=[\mathrm{x} \times[5 / 18] \mathrm{m} / \mathrm{s}$.
$X$ Therefore, Speed $=[45 \times[5 / 18] \mathrm{m} / \mathrm{sec}=[25 / 2] \mathrm{m} / \mathrm{sec}$.
$X$ Thus the total distance to be covered $=[360+140] \mathrm{m}=500 \mathrm{~m}$. Also, we know that the formula for finding Time = (Distance/Speed 〕
$X$ Hence, the required time $=[(500 \times 2] / 25] \mathrm{sec}=40 \mathrm{sec}$.

## EXAMPLES

A train running at certain speed crosses a stationary engine in 20 seconds. To find out the speed of the train. Which of the following information is

## necessary:

A. Only the length of the train
B. Only the length of the engine
C. Either the length of the train and the length of the engine
D. Both the length of the train and the length of the engine

## SOLUTION

$X$ Answer: D. Both the length of the train and the length of the engine
$X$ Explanation: Since the sum of the lengths of the train and the length of the engine is needed, So both the lengths must be known.

## PROBLEM

X A jogger running at $9 \mathrm{~km} / \mathrm{hr}$ along side a railway track is 240 m ahead of the engine of a 120 m long train running at $45 \mathrm{~km} / \mathrm{hr}$ in the same direction. In how much time will the train pass the jogger?
A. 12 secs
B. 18 secs
C. 36 secs
D. 72 secs

## SOLUTION

$X$ Answer:
C.
36

Explanation: Speed of train relative to jogger $=45-9=36 \mathrm{~km} / \mathrm{hr}$.
$=\quad 36$

5/18
$=\quad 10$ $\mathrm{m} / \mathrm{sec}$

Distance to be covered $=240+120=360$
m
Time taken $=360 / 10=36$ secs

THANKS!
Any questions?
You can find me at
X rahgulpoopathi@gmail.com

