

IOT Smart Energy Management System

IOT Smart Energy Management System

IIOT Enrgy Management System

- IoT Energy Management is a process that includes planning and management of energy consumption patterns in different industries.
- Internet of things Energy Management is designed to monitor and optimize energy compliance thereby improving better capacity utilization, boosting business productivity, reducing maintenance & man-power, and increasing the reliability of energy assets.
- IoT-backed sensors keep an eye on consumption patterns and provide insights into inefficient areas which in turn help to analyze energy consumption usage and pattern.
- These solutions can be utilized to manage and optimize energy consumption patterns by taking complete control of energy data at the most fundamental and granular level.

Smart Energy

What is Smart Grid

A Smart Grid is an electricity network that can intelligently integrate the actions of all users connected to it – generators, consumers and those that do both – in order to efficiently deliver sustainable, economic and secure electricity supplies.

Source: European Technology Platform Smart Grids

SMART GRID

Substitute

Source: Supplies.

Since Plant

Source: European Technology Platform Smart Grids

Source: European Technology Platform Smart Grids

Source: European Technology Platform Smart Grids

SMART GRID

Supplies.

Source: European Technology Platform Smart Grids

Source: European Technology Platform Smart Grids

Source: European Technology Platform Smart Grids

SMART GRID

Supplies.

Source: European Technology Platform Smart Grids

Source: European Technology Platform Smart G

Traditional Power Grid and Smart Grid

Characteristics	Traditional Power grid	Smart Grid
Technology	Electromechanical:	Digital: employs digital technology allowing for increased communication between devices and facilitating remote control
Distribution	One-Way Distribution: Power can only be distributed from the main plant using traditional energy infrastructure.	Two-Way Distribution: While power is still distributed from the primary power plant, it can also go back up the lines to the main plant from a secondary provider. e.g. solar panels, can put energy back on to the grid.
Generation	Centralized: Power must be generated from a central location.	Distributed: Using smart grid infrastructure, power can be distributed from multiple plants and substations to aid in balancing the load, decrease peak time strains, and limit the number of power outages.

Traditional Power Grid and Smart Grid

Characteristics	Traditional Power grid	Smart Grid
Sensors	Few Sensors: The infrastructure is not equipped to handle many sensors on the lines. Difficult to pinpoint the location of a problem and can result in longer downtimes.	Sensors Throughout: Multiple sensors placed on the lines. Easily pinpoint the location of a problem Helps reroute power to where it is needed while limiting the areas affected by the downtime.
Monitoring	Manual: Due to limitations in traditional infrastructure, energy distribution must be monitored manually.	Self: The smart grid can monitor itself using digital technology. This allows it to balance power loads, troubleshoot outages, and manage distribution without the need for direct intervention from a technician.

Traditional Power Grid and Smart Grid

Characteristics	Traditional Power grid	Smart Grid
Control	Limited: Difficult to control power infrastructure.	Pervasive: With the increased amount of sensors, energy companies have more control over power distribution. Energy and energy consumption can be monitored all the way down the line; from the moment it leaves the power plant, all the way to the consumer.
Costumer Choice	Fewer: The traditional power grid system infrastructure is not properly equipped to give customers a choice in the way they receive their electricity.	Many: Using smart technologies, infrastructure can be shared. Alternative energy companies come on to the grid allowing consumers to have more choice.

CHALLENGES IN IMPLEMENTING IOT ENERGY MANAGEMENT SOLUTIONS

Connectivity

❖ The integration of your new **IoT connection to an existing legacy system** is a challenge due to technology generation gaps and modernization of existing infrastructure is required.

Privacy And Data Security

❖ There is a high number of important consumer data involved in this type of setup which can turn out to be disastrous for the consumers and tarnish the reputation of the company.

Integration

❖ Integrating IoT technology with existing platforms can be a big challenge for any company and the whole situation becomes even more difficult in the energy sector due to the complexity of existing infrastructure.

IOT BASED INTELLIGENT ENERGY MANAGEMENT SOLUTION

- Energy monitoring and benchmarking are important for energy management, as
 they enable decision-makers to identify improvement areas and to keep a track of
 the effects of their decisions on energy consumption use.
- IoT is set to become the ultimate driver of energy efficiency and sustainability in the coming years paving the way for conserving a tremendous amount of energy.
- IoT energy management systems help organizations establish an efficiently functioning business with marginally reducing operational expenditure.

1. ADVANCED ANALYTICS

- IoT solutions based on artificial intelligence and machine learning can get intelligent actionable insights from the business.
- It provides transparent insights into the critical energy parameters such as power interruption patterns, voltage and frequency trends, etc.
- Advance analytics adds intelligence to this data making it decision-able, enabling real-time alerting, automate optimization, etc.

2. REAL-TIME ENERGY MONITORING

- IoT solutions integrated with machine learning help monitor energy compliance within business procedures to improve efficiency.
- Application of IoT for energy management helps you with business analytics and energy quality control on your devices to lower costs, boost efficiencies and reduce environmental impact.
- It also helps in finding out the main causes of inefficiency and improvement areas, thus reducing the wastage of resources.

3. PREDICTIVE ANALYSIS

- Predictive analysis with the power of artificial intelligence and machine learning enables real-time updates if a machine needs to be repaired or replaced.
- With the help of machine learning, the IoT network extracts real-time data from sensors and devices to predict the failure of a component of a machine before time.
- It increases the uptime of devices and reduces maintenance costs

4. CENTRALIZED DASHBOARD

- Our centralized dashboard provides all the information related to the installed devices on machines on a single unified window.
- It displays the **energy load** throughout the day that project useful data in an intuitive and easy to understand manner.
- An IoT based energy management platform for industrial facilities or commercial settings provide single window visibility to monitor multiple sites, respond to alerts, analyze metrics and reports together.

5. SMART AND CUSTOMIZED REPORTS

- The reports are readily available with just one click.
- Data related to specific parameters and device performance is continuously sent by the real-time energy monitoring system, which can be measured into analytical reports and calculated to develop efficiency-boosting operations.
- A customizable report on energy usage and consumption helps you to remotely identify & proactively assess issues to reduce maintenance costs and extend asset life.

THE BENEFITS OF IOT ENERGY MANAGEMENT SYSTEMS

Smart energy management solutions based on the Internet of Things have a wide range of benefits for the different industry verticals.

Let's find out how the Internet of Things and energy efficiency can benefit each other for the different industry verticals:

1. COST SAVINGS

- ➤ IoT energy management solution helps organizations to reduce energy spending and operating expenses and minimize man-power.
- > You can predict the consumption pattern and accordingly, spend and plan.

2. HIGHER ENERGY EFFICIENCY

- ➤ Data collected by sensors can be used to regulate air-conditioning and lighting levels in real-time.
- ➤ Application of IoT in energy management in the form of smart sensors and detectors reduces overall energy consumption.

3. REMOTE ACCESS

- Cloud access allows those responsible to remotely monitor and regulate their energy systems in real-time.
- It gives you the power to identify, track, and understand your energy usage and to report on your performance over time.

4. INSIGHTFUL REPORTS

➤ Data related to specific parameters and device performance is continuously sent by the real-time energy monitoring system, which can be measured into analytical reports and calculated to develop efficiency-boosting operations.

5. CONSUMPTION PATTERNS

- ➤ IoT provides reports, data charts, and visualization which helps you to comprehend the information easier.
- > These reports helps to track operational inefficiencies.

6. ACCESSIBILITY

- ➤ IoT energy management solutions provide easy accessibility, usability, management control to avoid any mishaps.
- You can also get proactive alerts for asset failure situations.

Smart Grid Benefits

Operational Efficiency

- Integrate distributed generation
- Optimize network design
- Enable remote monitoring and diagnostics
- Improve asset and resource utilization

Energy Efficiency

- Reduce system and line losses
- Enable DSM offerings
- · Improve load and VAR management
- · Comply with state energy efficiency policies

Smart Grid

Customer Satisfaction

- Reduce outage frequency and duration
- Improve power quality
- Enable customer self-service
- Reduce customer energy costs

Green

- Reduce GHG emission
- Integrate renewable generating assets
- Comply with Carbon/GHG legislation
- Enable wide adoption of PHEV

THANK YOU