
SNSCT/C SE Page 1

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35

(An Autonomous Institution)

19CSB303 and Composing Mobile Apps

UNIT 4

Motion sensors

The Android platform provides several sensors that let you monitor the motion of a device.

The sensors' possible architectures vary by sensor type:

 The gravity, linear acceleration, rotation vector, significant motion, step counter, and step

detector sensors are either hardware-based or software-based.

 The accelerometer and gyroscope sensors are always hardware-based.

Most Android-powered devices have an accelerometer, and many now include a gyroscope. The

availability of the software-based sensors is more variable because they often rely on one or

more hardware sensors to derive their data. Depending on the device, these software-based

sensors can derive their data either from the accelerometer and magnetometer or from the

gyroscope.

Motion sensors are useful for monitoring device movement, such as tilt, shake, rotation, or

swing. The movement is usually a reflection of direct user input (for example, a user steering a

car in a game or a user controlling a ball in a game), but it can also be a reflection of the physical

environment in which the device is sitting (for example, moving with you while you drive your

car). In the first case, you are monitoring motion relative to the device's frame of reference or

your application's frame of reference; in the second case you are monitoring motion relative to

the world's frame of reference. Motion sensors by themselves are not typically used to monitor

device position, but they can be used with other sensors, such as the geomagnetic field sensor, to

determine a device's position relative to the world's frame of reference (see Position Sensors for

more information).

All of the motion sensors return multi-dimensional arrays of sensor values for each SensorEvent.

For example, during a single sensor event the accelerometer returns acceleration force data for

the three coordinate axes, and the gyroscope returns rate of rotation data for the three coordinate

axes. These data values are returned in a float array (values) along with

other SensorEvent parameters. Table 1 summarizes the motion sensors that are available on the

Android platform.

https://developer.android.com/guide/topics/sensors/sensors_position.html
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEvent.html#values
https://developer.android.com/reference/android/hardware/SensorEvent.html

SNSCT/C SE Page 2

The rotation vector sensor and the gravity sensor are the most frequently used sensors for motion

detection and monitoring. The rotational vector sensor is particularly versatile and can be used

for a wide range of motion-related tasks, such as detecting gestures, monitoring angular change,

and monitoring relative orientation changes. For example, the rotational vector sensor is ideal if

you are developing a game, an augmented reality application, a 2-dimensional or 3-dimensional

compass, or a camera stabilization app. In most cases, using these sensors is a better choice than

using the accelerometer and geomagnetic field sensor or the orientation sensor.

Android Open Source Project sensors

The Android Open Source Project (AOSP) provides three software-based motion sensors: a

gravity sensor, a linear acceleration sensor, and a rotation vector sensor. These sensors were

updated in Android 4.0 and now use a device's gyroscope (in addition to other sensors) to

improve stability and performance. If you want to try these sensors, you can identify them by

using the getVendor() method and the getVersion() method (the vendor is Google LLC; the

version number is 3). Identifying these sensors by vendor and version number is necessary

because the Android system considers these three sensors to be secondary sensors. For example,

if a device manufacturer provides their own gravity sensor, then the AOSP gravity sensor shows

up as a secondary gravity sensor. All three of these sensors rely on a gyroscope: if a device does

not have a gyroscope, these sensors do not show up and are not available for use.

Use the gravity sensor

The gravity sensor provides a three dimensional vector indicating the direction and magnitude of

gravity. Typically, this sensor is used to determine the device's relative orientation in space. The

following code shows you how to get an instance of the default gravity sensor:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY)

The units are the same as those used by the acceleration sensor (m/s2), and the coordinate system

is the same as the one used by the acceleration sensor.

Note: When a device is at rest, the output of the gravity sensor should be identical to that of the

accelerometer.

Use the linear accelerometer

The linear acceleration sensor provides you with a three-dimensional vector representing

acceleration along each device axis, excluding gravity. You can use this value to perform gesture

https://developer.android.com/reference/android/hardware/Sensor.html#getVendor()
https://developer.android.com/reference/android/hardware/Sensor.html#getVersion()
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin

SNSCT/C SE Page 3

detection. The value can also serve as input to an inertial navigation system, which uses dead

reckoning. The following code shows you how to get an instance of the default linear

acceleration sensor:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? =

sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION)

Conceptually, this sensor provides you with acceleration data according to the following

relationship:

linear acceleration = acceleration - acceleration due to gravity

You typically use this sensor when you want to obtain acceleration data without the influence of

gravity. For example, you could use this sensor to see how fast your car is going. The linear

acceleration sensor always has an offset, which you need to remove. The simplest way to do this

is to build a calibration step into your application. During calibration you can ask the user to set

the device on a table, and then read the offsets for all three axes. You can then subtract that offset

from the acceleration sensor's direct readings to get the actual linear acceleration.

The sensor coordinate system is the same as the one used by the acceleration sensor, as are the

units of measure (m/s2).

Use the rotation vector sensor

The rotation vector represents the orientation of the device as a combination of an angle and an

axis, in which the device has rotated through an angle θ around an axis (x, y, or z). The following

code shows you how to get an instance of the default rotation vector sensor:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR)

The three elements of the rotation vector are expressed as follows:

https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-coords
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin

SNSCT/C SE Page 4

Where the magnitude of the rotation vector is equal to sin(θ/2), and the direction of the rotation

vector is equal to the direction of the axis of rotation.

Figure 1. Coordinate system used by the rotation vector sensor.

The three elements of the rotation vector are equal to the last three components of a unit

quaternion (cos(θ/2), x*sin(θ/2), y*sin(θ/2), z*sin(θ/2)). Elements of the rotation vector are

unitless. The x, y, and z axes are defined in the same way as the acceleration sensor. The

reference coordinate system is defined as a direct orthonormal basis (see figure 1). This

coordinate system has the following characteristics:

 X is defined as the vector product Y x Z. It is tangential to the ground at the device's current

location and points approximately East.

 Y is tangential to the ground at the device's current location and points toward the geomagnetic

North Pole.

 Z points toward the sky and is perpendicular to the ground plane.

For a sample application that shows how to use the rotation vector sensor,

see RotationVectorDemo.java.

https://android.googlesource.com/platform/development/+/master/samples/ApiDemos/src/com/example/android/apis/os/RotationVectorDemo.java

SNSCT/C SE Page 5

Use the significant motion sensor

The significant motion sensor triggers an event each time significant motion is detected and then

it disables itself. A significant motion is a motion that might lead to a change in the user's

location; for example walking, biking, or sitting in a moving car. The following code shows you

how to get an instance of the default significant motion sensor and how to register an event

listener:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val mSensor: Sensor? =

sensorManager.getDefaultSensor(Sensor.TYPE_SIGNIFICANT_MOTION)

val triggerEventListener = object : TriggerEventListener() {

 override fun onTrigger(event: TriggerEvent?) {

 // Do work

 }

}

mSensor?.also { sensor ->

 sensorManager.requestTriggerSensor(triggerEventListener, sensor)

}

For more information, see TriggerEventListener.

Use the step counter sensor

The step counter sensor provides the number of steps taken by the user since the last reboot

while the sensor was activated. The step counter has more latency (up to 10 seconds) but more

accuracy than the step detector sensor. The following code shows you how to get an instance of

the default step counter sensor:

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER)

https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/reference/android/hardware/TriggerEventListener.html

SNSCT/C SE Page 6

To preserve the battery on devices running your app, you should use the JobScheduler class to

retrieve the current value from the step counter sensor at a specific interval. Although different

types of apps require different sensor-reading intervals, you should make this interval as long as

possible unless your app requires real-time data from the sensor.

Use the step detector sensor

The step detector sensor triggers an event each time the user takes a step. The latency is expected

to be below 2 seconds. The following code shows you how to get an instance of the default step

detector sensor:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR)

Work with raw data

The following sensors provide your app with raw data about the linear and rotational forces

being applied to the device. In order to use the values from these sensors effectively, you need to

filter out factors from the environment, such as gravity. You might also need to apply a

smoothing algorithm to the trend of values to reduce noise.

Use the accelerometer

An acceleration sensor measures the acceleration applied to the device, including the force of

gravity. The following code shows you how to get an instance of the default acceleration sensor:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)

Conceptually, an acceleration sensor determines the acceleration that is applied to a device (Ad)

by measuring the forces that are applied to the sensor itself (Fs) using the following relationship:

https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin

SNSCT/C SE Page 7

However, the force of gravity is always influencing the measured acceleration according to the

following relationship:

For this reason, when the device is sitting on a table (and not accelerating), the accelerometer

reads a magnitude of g = 9.81 m/s2. Similarly, when the device is in free fall and therefore

rapidly accelerating toward the ground at 9.81 m/s2, its accelerometer reads a magnitude of g = 0

m/s2. Therefore, to measure the real acceleration of the device, the contribution of the force of

gravity must be removed from the accelerometer data. This can be achieved by applying a high-

pass filter. Conversely, a low-pass filter can be used to isolate the force of gravity. The following

example shows how you can do this:

KOTLINJAVA

override fun onSensorChanged(event: SensorEvent) {

 // In this example, alpha is calculated as t / (t + dT),

 // where t is the low-pass filter's time-constant and

 // dT is the event delivery rate.

 val alpha: Float = 0.8f

 // Isolate the force of gravity with the low-pass filter.

 gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0]

 gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1]

 gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2]

 // Remove the gravity contribution with the high-pass filter.

 linear_acceleration[0] = event.values[0] - gravity[0]

 linear_acceleration[1] = event.values[1] - gravity[1]

 linear_acceleration[2] = event.values[2] - gravity[2]

}

https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin

SNSCT/C SE Page 8

Note: You can use many different techniques to filter sensor data. The code sample above uses a

simple filter constant (alpha) to create a low-pass filter. This filter constant is derived from a

time constant (t), which is a rough representation of the latency that the filter adds to the sensor

events, and the sensor's event delivery rate (dt). The code sample uses an alpha value of 0.8 for

demonstration purposes. If you use this filtering method you may need to choose a different

alpha value.

Accelerometers use the standard sensor coordinate system. In practice, this means that the

following conditions apply when a device is laying flat on a table in its natural orientation:

 If you push the device on the left side (so it moves to the right), the x acceleration value is

positive.

 If you push the device on the bottom (so it moves away from you), the y acceleration value is

positive.

 If you push the device toward the sky with an acceleration of A m/s2, the z acceleration value is

equal to A + 9.81, which corresponds to the acceleration of the device (+A m/s2) minus the force

of gravity (-9.81 m/s2).

 The stationary device will have an acceleration value of +9.81, which corresponds to the

acceleration of the device (0 m/s2 minus the force of gravity, which is -9.81 m/s2).

In general, the accelerometer is a good sensor to use if you are monitoring device motion.

Almost every Android-powered handset and tablet has an accelerometer, and it uses about 10

times less power than the other motion sensors. One drawback is that you might have to

implement low-pass and high-pass filters to eliminate gravitational forces and reduce noise.

The Android SDK provides a sample application that shows how to use the acceleration sensor

(Accelerometer Play).

Use the gyroscope

The gyroscope measures the rate of rotation in rad/s around a device's x, y, and z axis. The

following code shows you how to get an instance of the default gyroscope:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE)

https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-coords
https://github.com/googlesamples/android-AccelerometerPlay/
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin

SNSCT/C SE Page 9

The sensor's coordinate system is the same as the one used for the acceleration sensor. Rotation

is positive in the counter-clockwise direction; that is, an observer looking from some positive

location on the x, y or z axis at a device positioned on the origin would report positive rotation if

the device appeared to be rotating counter clockwise. This is the standard mathematical

definition of positive rotation and is not the same as the definition for roll that is used by the

orientation sensor.

Usually, the output of the gyroscope is integrated over time to calculate a rotation describing the

change of angles over the timestep. For example:

KOTLINJAVA

// Create a constant to convert nanoseconds to seconds.

private val NS2S = 1.0f / 1000000000.0f

private val deltaRotationVector = FloatArray(4) { 0f }

private var timestamp: Float = 0f

override fun onSensorChanged(event: SensorEvent?) {

 // This timestep's delta rotation to be multiplied by the current rotation

 // after computing it from the gyro sample data.

 if (timestamp != 0f && event != null) {

 val dT = (event.timestamp - timestamp) * NS2S

 // Axis of the rotation sample, not normalized yet.

 var axisX: Float = event.values[0]

 var axisY: Float = event.values[1]

 var axisZ: Float = event.values[2]

 // Calculate the angular speed of the sample

 val omegaMagnitude: Float = sqrt(axisX * axisX + axisY * axisY + axisZ * axisZ)

 // Normalize the rotation vector if it's big enough to get the axis

 // (that is, EPSILON should represent your maximum allowable margin of error)

 if (omegaMagnitude > EPSILON) {

https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-coords
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin

SNSCT/C SE Page 10

 axisX /= omegaMagnitude

 axisY /= omegaMagnitude

 axisZ /= omegaMagnitude

 }

 // Integrate around this axis with the angular speed by the timestep

 // in order to get a delta rotation from this sample over the timestep

 // We will convert this axis-angle representation of the delta rotation

 // into a quaternion before turning it into the rotation matrix.

 val thetaOverTwo: Float = omegaMagnitude * dT / 2.0f

 val sinThetaOverTwo: Float = sin(thetaOverTwo)

 val cosThetaOverTwo: Float = cos(thetaOverTwo)

 deltaRotationVector[0] = sinThetaOverTwo * axisX

 deltaRotationVector[1] = sinThetaOverTwo * axisY

 deltaRotationVector[2] = sinThetaOverTwo * axisZ

 deltaRotationVector[3] = cosThetaOverTwo

 }

 timestamp = event?.timestamp?.toFloat() ?: 0f

 val deltaRotationMatrix = FloatArray(9) { 0f }

 SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);

 // User code should concatenate the delta rotation we computed with the current rotation

 // in order to get the updated rotation.

 // rotationCurrent = rotationCurrent * deltaRotationMatrix;

}

Standard gyroscopes provide raw rotational data without any filtering or correction for noise and

drift (bias). In practice, gyroscope noise and drift will introduce errors that need to be

compensated for. You usually determine the drift (bias) and noise by monitoring other sensors,

such as the gravity sensor or accelerometer.

SNSCT/C SE Page 11

Use the uncalibrated gyroscope

The uncalibrated gyroscope is similar to the gyroscope, except that no gyro-drift compensation is

applied to the rate of rotation. Factory calibration and temperature compensation are still applied

to the rate of rotation. The uncalibrated gyroscope is useful for post-processing and melding

orientation data. In general,gyroscope_event.values[0] will be close

to uncalibrated_gyroscope_event.values[0] - uncalibrated_gyroscope_event.values[3]. That is,

calibrated_x ~= uncalibrated_x - bias_estimate_x

Note: Uncalibrated sensors provide more raw results and may include some bias, but their

measurements contain fewer jumps from corrections applied through calibration. Some

applications may prefer these uncalibrated results as smoother and more reliable. For instance, if

an application is attempting to conduct its own sensor fusion, introducing calibrations can

actually distort results.

In addition to the rates of rotation, the uncalibrated gyroscope also provides the estimated drift

around each axis. The following code shows you how to get an instance of the default

uncalibrated gyroscope:

KOTLINJAVA

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

val sensor: Sensor? =

sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE_UNCALIBRATED)

https://developer.android.com/guide/topics/sensors/sensors_motion#sensors-motion-gyro
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin
https://developer.android.com/guide/topics/sensors/sensors_motion#kotlin

	Motion sensors
	Use the gyroscope
	Use the uncalibrated gyroscope

