

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – II DESIGN OF EXPERIMENTS

UNIT. IT DESIGN: 03 EXPERIMENTS

ANALYSIS OF VARIANCE (ANOVA):

fucturial.

ANOVA is a technique that will enable us to test the significance of the difference among more than two sample mean.

ASSUMPTION:

- I The observations are landom
- 2) The observations are independent.
- 3) The samples are drown from normal fopulations
- 4) population variances are equal.

BASIC PRINCIPLES:

- 1) Randomisation
- 2) Replication
- 3) Local control.

BASIC DESIGN.

- * Completely landomised design (CRD) One-way classif
- * Randomised Block design (RBD) two-way desistions
- * Latin square design (LSD) There-way classificati
- * Two square factorial design

Hist: - F - Ratio : F = 512 where 512 >52

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – II DESIGN OF EXPERIMENTS

procedure to find :-2). Sum of all the teems (T) & Total no of Sample sizer) 3) Correction factor (C.F), C.F = T 4) 738: Total sum of squares = (sum of the squares of all the terms) - C.F. D SSC: Sum & squares between samples 5) 88 E: Error sum & squares = 188 _ SSC 4) Annova table 8) Conclusion. 1) Hammel 1.0 11 Date 1) A completely sandomised design experiment with loplots and 3 treatments egave the following sently. plot No: : 1 2 3 4 5 6 4 8 9 10

- recotment: A B C A C C A B A B

yield: 5 4 3 4 5 1 3 4 14

Analyse The sendt for treatment effect.

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS UNIT - II DESIGN OF EXPERIMENTS

Treatment			Yield			9	Treadment	
		r	5	¥	3 1		Ă	B C
(211)				3	-	Jield -	5	4 3
(N2)	В		4	4	7 -		1	1 5
(m ₅)	C		3	5	, -		1	1
\varkappa'	γ_2	ત્ર	Total	χı²	35 T	21.3 ²		
5	4	3	12	25	16	9		
A	4	5	16	49	16	25		e qui
3	F	,	11	9	49	1		49
1	anī.	31-	1	1	BRIDE	7		
16	15	9	40	84	81	35		
En,	En2	En3		≥n,2	En,2	≥ng	A constant	

Step 1: Formulating 140 & H1:

Ho: There is no significance déflésence between the treatmente.

HI: There is significance difference between the

treatments.

$$N = n_1 + n_2 + n_3$$

$$= 4 + 3 + 3 = 10$$

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – II DESIGN OF EXPERIMENTS

Steps: Correction Factor, C.F.

$$C \cdot F = \frac{T^2}{N} = \frac{40^2}{10}$$

$$= 160$$

step 5: SSC =
$$(\underline{\xi}_{n_1})^2 + (\underline{\xi}_{n_2})^2 + (\underline{\xi}_{n_3})^2 - C.F$$

= $\frac{1b^2}{4} + \frac{15^2}{3} + \frac{9^2}{3} - 160$

= 86+81+35-160

Olip 7: Annova table:

Steps: Conclusion:

tualments.