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Subspace Iteration Method

• Most powerful method for obtaining first few Eigen values/Eigen  
vectors

• Minimum storage is necessary as the subroutine can be  
implemented as out-of core solver

• Basic Steps

– Establish p starting vectors, where p is the number of Eigen  
values/vectors required P<<n

– Use simultaneous inverse iteration on ‘p’ vectors and Ritz  
analysis to extract best Eigen values/vectors

– After iteration converges, use STRUM sequence check to verify  
on missing Eigen values

k  m  L D L T
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• Method is called “Subspace” iteration because it is equivalent
to iterating on whole of ‘p’ dimension (rather that n) and not  

as simultaneous iteration of “p’ individual vectors

• Starting vectors

• Strum sequence property

For better convergence of initial lower eigen values ,it is better  
if subspace is increased to q > p such that,

q = min( 2p , p+8)

Smallest eigen value is best approximated than largest value in  
subspace q.
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Starting Vectors

(1) When some masses are zero, for non zero d.o.f have  
one as vector entry.
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(2) Take ratio .The element that has minimum value
will have 1 and rest zero in the starting vector.
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• Starting vectors can be generated by Lanczos algorithm-
converges fast.

• In dynamic optimisation , where structure is modified previous  
vectors could be good starting values.

Eigen value problem

0 1
0 0

{X } 
1 0
0 0 

ku&/ mu& 3/ 2,,1,8

[k][] [][m][ ]  

[k]nﾴ p , []nﾴ p

[]T[k ][]  []
pﾴp

[]T[m][]  [I ]

(1)

(2)

(3)
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Eqn. 2 are not true. Eigen values unless P = n

If [] satisfies (2) and (3),they cannot be said that they are true

Eigen vectors. If [] satisfies (1),then they are true Eigen vectors.

Since we have reduced the space from n to p. It is only
necessary that subspace of ‘P’ as a whole converge and not
individual vectors.
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Algorithm:

Pick starting vector XR of size n x p

For k=1,2,…..

[m]{X }

k1

k1

k 1 k 1 k 1 k1 k1

[k ][ X k 1]  [m]{Xk }

[k ]  {X }T [k ]{X }
k 1 k 1

[m]  {X }T

k 1 k1

[k ] {Q}  [m] {Q

[ X ]k 1  {X }k1[Q]k 1

}[]

k+1 { X }k+1 -  k 

static

p x p  

p x p
Smaller eigen value  
problem, Jacobi
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QUESTIONS RELATED ABOVE SLIDES
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Factorization  

Subspace Iteration

kk1k1

k1 k1 k1

]k1

[k]  [L][D][L]T

[k ][X ]k1  [Y ]k

[k ]  [X ]T [Y ]

[M ]  [X ]T [Y ]

Sturm sequence check

[k ]k1[Q]k1 [M ]k1[Q]k1[  

[Y ]k1 [Y ]k1[Q]k1

[k ]  [k] [M ]

[k ]  [L][D][L]T

[k ][]k1   k1[M ][ ]k1

i i i

[k][ ]k 1

i

(1/2)nm2 + (3/2)nm  

nq(2m+1)  

(nq/2)(q+1)

(nq/2)(q+1)

n(m+1)

(1/2)nm2 + (3/2)nm

4nm + 5n

nq2
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Total for p lowest vector.  

@ 10 iteration with

q = min(2p , p+8) is

nm2 + nm(4+4p)+5np  

20np(2m+q+3/2)

This factor increases as that iteration increases.

N = 70000,b = 1000, p = 100, q = 108 Time = 17 hours
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Aim: Generate (neq x m) modal matrix (Ritz vector).

• Find k and { u }k for the kth component

Let []k = substructure Modal matrix  

which is nk x n , nk = # of interior d.o.f

n = # of normal modes take determined for  
that structure

Assuming ‘l’ structure,
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1,2

2,3

.

[0] [0] . .

[I ] [0] . .

[0] [0] . .

[0] [I ] . .

. . . .

[0] [0] . .

[]1 .
 [0] .
 

.
[R]

[]2

 [0] .





.

[] .


 l 

(2)

Neq x m

[ I ]k,k+1 - with # of rows = # of attachment d.o.f. between k and k+1

= # of columns

Ritz analysis:

Determine [ Kr ] = [R]T [k] [R]

[ Mr ] = [R]T [M] [R]

[kr] {X} = [M]r +[X] [ ] - Reduced Eigen value problem

Eigen vector Matrix, [  ] = [ R ] [ X ]
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Use the subspace Iteration to calculate the eigen pairs (1,1) and  

(2,2) of the problem K = M ,where

20 
0


 ;K   M  






0 
 1

 2 1 0 0 
1 2 1

 0 1 2 1
 0 0 1 1 

  

0 0 

0  2 0

 0 1



 2 1 0 0 
1 2 1
  X   
 0 1 2 1 2 0 0

0 1 1  0   

2 2

and

2 1
4 2

X 2   
4 3
4 4 

1
;

4
K  4

2
M  8

6
1 1 4 3   

Example
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