

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

SIS INSTITUTIONS

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACEENGINEERING

19ASE306 – THEORY OF VIBRATIONS AND AEROELASTICITY III YEAR VI SEM

UNIT IV – APPROXIMATE METHODS

TOPIC – Matrix Iteration Method

NAME: Mr.N.Venkatesh., M.Tech Assistant Professor Aeronautical Engineering SNS College of Technology

- Most powerful method for obtaining first few Eigen values/Eigen vectors
- Minimum storage is necessary as the subroutine can be implemented as out-of core solver
- Basic Steps
 - Establish p starting vectors, where p is the number of Eigen values/vectors required P<<n
 - Use simultaneous inverse iteration on 'p' vectors and Ritz analysis to extract best Eigen values/vectors
 - After iteration converges, use STRUM sequence check to verify on missing Eigen values

$$\begin{bmatrix} k - \mu m \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^T$$

- Method is called "Subspace" iteration because it is equivalent to iterating on whole of 'p' dimension (rather that n) and not as simultaneous iteration of "p' individual vectors
- Starting vectors
- Strum sequence property

For better convergence of initial lower eigen values , it is better if subspace is increased to q > p such that,

$$q = min(2p, p+8)$$

Smallest eigen value is best approximated than largest value in subspace q.

Starting Vectors

(1) When some masses are zero, for non zero d.o.f have one as vector entry.

(2) Take k_{la}/m_{la} ratio .The element that has minimum value will have 1 and rest zero in the starting vector.

$$Diagonal [k] = \begin{pmatrix} +3 \\ \uparrow & 2 \\ \uparrow & 2 \\ \uparrow & 4 \\ \rightarrow & 8 \end{pmatrix}, [m] = \begin{pmatrix} +2 \\ \uparrow & 0 \\ \uparrow & 0 \\ \uparrow & 4 \\ \rightarrow & 1 \end{pmatrix}$$

15-May-23

 $k_{la}/m_{la} = 3/2, \infty, 1, 8$

 $\{X\} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$

- Starting vectors can be generated by Lanczos algorithmconverges fast.
- In dynamic optimisation , where structure is modified previous vectors could be good starting values.

Eigen value problem

$[k][\phi] = [\Omega][m][\phi]$	(1)
$[k]_{n^{\texttt{M}}p}, \ [\phi]_{n^{\texttt{M}}p}$	
$[\phi]^T[k][\phi] = [\Omega]_{p^{\texttt{l} \texttt{k}} p}$	(2)
$[\phi]^T[m][\phi] = [I]$	(3)

15-May-23

Eqn. 2 are not true. Eigen values unless P = n

If $[\phi]$ satisfies (2) and (3),they cannot be said that they are true Eigen vectors. If $[\phi]$ satisfies (1),then they are true Eigen vectors.

Since we have reduced the space from n to p. It is only necessary that subspace of 'P' as a whole converge and not individual vectors.

15-May-23

Algorithm:

Pick starting vector X_R of size n x p

For k=1,2,.....

Smaller eigen value problem, Jacobi

$$[k][\bar{X}_{k+1}] = [m]\{\bar{X}_{k}\} \quad \text{static}$$

$$[k]_{k+1} = \{\bar{X}\}_{k+1}^{T}[k]\{\bar{X}_{k+1}\} \quad p \times p$$

$$[m]_{k+1} = \{\bar{X}\}_{k+1}^{T}[m]\{\bar{X}_{k+1}\} \quad p \times p$$

$$[k]_{k+1}\{Q\}_{k+1} = [m]_{k+1}\{Q_{k+1}\}[\Lambda]_{k+1}$$

$$[X]_{k+1} = [\bar{X}]_{k+1} = [M]_{k+1}[Q_{k+1}][\Lambda]_{k+1}$$

 $J_{k+1} \bigcup_{k+1} \bigcup_{k+1}$

$$\Lambda_{k+1} \longrightarrow \Lambda \quad \{X\}_{k+1} \longrightarrow \phi \qquad k \longrightarrow \infty$$

 Λ k+1

15-May-23

QUESTIONS RELATED ABOVE SLIDES

15-May-23

Factorization Subspace Iteration

Sturm sequence check

(1/2)nm² + (3/2)nm $[k] = [L][D][L]^T$ nq(2m+1) $[k][\overline{X}]_{k+1} = [Y]_{k}$ (nq/2)(q+1) $[k]_{k+1} = [\overline{X}]_{k+1}^{T} [Y_{k}]$ (nq/2)(q+1) $[M_{k+1}] = [\overline{X}_{k+1}]^T [\overline{Y}_{k+1}]$ $[k]_{k+1}[Q]_{k+1} = [M]_{k+1}[Q]_{k+1}[$ $]_{k+1}$ $[Y]_{k+1} = [Y]_{k+1}[Q]_{k+1}$ nq² $[k] = [k] - \mu[M]$ n(m+1) (1/2)nm² + (3/2)nm $[\overline{k}] = [L][D][L]^T$ $[[k]][\phi]_{i}^{k+1} - \lambda_{i}^{k+1}[M][\phi_{i}]^{k+1}$ 4nm + 5n $[k][\phi]$

Total for p lowest vector. (a) 10 iteration with $nm^2 + nm(4+4p)+5np$ q = min(2p, p+8) is 20np(2m+q+3/2)This factor increases as that iteration increases. N = 70000,b = 1000, p = 100, q = 108 Time = 17 hours

Aim: Generate (neq x m) modal matrix (Ritz vector).

• Find λ_k and { u }_k for the kth component

Let $[\phi]_k$ = substructure Modal matrix

which is $nk \ge n\phi$, nk = # of interior d.o.f

 $n\phi = \#$ of normal modes take determined for that structure

Assuming 'l' structure,

15-May-23

[I]_{k,k+1} - with # of rows = # of attachment d.o.f. between k and k+1 = # of columns

Ritz analysis:

(2)

Determine $[K_r] = [R]^T[k][R]$

 $[\mathsf{M}_r] = [\mathsf{R}]^{\mathsf{T}}[\mathsf{M}][\mathsf{R}]$

 $[k_r] \{X\} = [M]_r + [X] [] - Reduced Eigen value problem$

Eigen vector Matrix, $[\phi] = [R][X]$

Example

Use the subspace Iteration to calculate the eigen pairs (λ_1, ϕ_1) and (λ_2, ϕ_2) of the problem K $\phi = \lambda M \phi$, where

$$K = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}; \quad M = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix};$$
$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}; \quad X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix};$$
$$\overline{X}_{2} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 4 & 3 \\ 4 & 4 \end{bmatrix} and$$

15-May-23

MATRIX ITERATION METHOD/ 16AE315-TOV/N.VENKATESH/AERO/SNSCT

 $K_{2} = 4\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}; M_{2} = 8\begin{bmatrix} 6 & 4 \\ 4 & 3 \end{bmatrix}$

REFERENCE LINKS

1. Fisher, J.W. (1970) Design of composite beams with formed metal deck. Eng. J. Amer. Inst. Steel Constr., 7, July, 88–96.

2. Wang, Y.C. (2002) Steel and Composite Structures – Analysis and Design for Fire Safety. Spon, London.

3. British Standards Institution BS EN 1994. Design of composite steel and concrete structures. Part 1-1, General rules and rules for buildings. To be published, British Standards Institution, London.

THANK YOU