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Dunkerley’s Method

x d F

Equation of motion : d m&x&x 0

Let [m] be the diagonal matrix, d m&x&x 0

1 1 1 1 2 2

2 2 2

1
. .

1
. .

.

.

.

.

. .

. .

.

.

1

1 n n

2 n n

n 1 n 2 2 n n n

d m
p 2

d 2 1 m 1 d m
p 2

d d m
p 2

 d  m 
1 I   x  0 p 2 

 

d md m 

d m 

 0

. . d m 

set

Det

DUNKERLAY’S METHOD/ 16AE315-TOV/N.VENKATESH/AERO/SNSCT15-May-23
2



Given a nth order polynomial equation, (1/p2)
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let p 

dii is the flexibility coefficient equal to deflection at i resulting from a  

unit load of i, its reciprocal must be the stiffness coefficient kii,  

equal to the force per unit deflection at i.
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By neglecting these terms(1/p2 , …1/pn ) ,1/p1 is larger than its true
2 2 2

value and there fore p1 is smaller than the exact value of the  

fundamental frequency
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The estimate to the fundamental frequency is made by recognizing  

p2 ,p3 etc are natural frequencies of higher modes and larger than  

p1.
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Dunkerley’s Approximation

It provides a lower bound estimate for the fundamental frequency.

Let p = natural frequency of system

pA, pB, pC, …….. pN = exact frequencies of component systems

Then
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The frequency so determined can be shown to be lower than the  
exact.

DUNKERLAY’S METHOD/ 16AE315-TOV/N.VENKATESH/AERO/SNSCT15-May-23
5



k

k

k
m

m

0.5m

Example # 1
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If natural modes of component systems A, B, C are close of each other,
then the value of p determined by this procedure can be shown to be
close to the exact.
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Consider the cantilever beam shown for which  
the component systems A,B,C are indicated .

Since the natural modes of the
system are in closer agreement in this
case than for the system of the shear  
beam type considered in the previous
example, the natural frequency  
computed by Dunkereley’s method
can be expected to be closer to the  
exact value than with case before.
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As expected the agreement is excellent in this case.
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Example # 3

Upper bound: Determined by Rayleigh’s method with y(x) = y0 sin(πx/L)

is,
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For m  L, we find

m μ

Lower bound: Determined by Dunkerley’s approximation  

If we consider one mode,
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Limitation of procedures:

• One cannot improve the accuracy of the solution (depends on the  
deflected shape of structure) in a systematic manner.

• Extension of procedure : Rayleigh - Ritz
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