

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

NSTITUTIONS

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACEENGINEERING

19ASE306 – THEORY OF VIBRATIONS AND AEROELASTICITY III YEAR VI SEM

UNIT IV – APPROXIMATE METHODS

TOPIC – Dunkerley's Method

NAME: Mr.N.Venkatesh., M.Tech Assistant Professor Aeronautical Engineering SNS College of Technology

Dunkerley's Method

 $\{x\} = \begin{bmatrix} d \end{bmatrix} \{F\}$ Equation of motion : $\begin{bmatrix} d \end{bmatrix} \begin{bmatrix} m \end{bmatrix} \{ \bigotimes \} + \{x\} = \{0\}$ Let [m] be the diagonal matrix, $\begin{bmatrix} d \end{bmatrix} \begin{bmatrix} m \end{bmatrix} \{ \bigotimes \} + \{x\} = \{0\}$

15-May-23

Given a nth order polynomial equation, (1/p²)

$$\left(\frac{1}{p^2}\right)^n + (d_{11}m_1 + d_{22}m_2 + \dots + d_{nn}m_n)\left(\frac{1}{p^2}\right)^{n-1} + \dots = 0$$

Sum of the roots of characteristic equation,

 d_{ii} is the flexibility coefficient equal to deflection at i resulting from a unit load of i, its reciprocal must be the stiffness coefficient k_{ii} , equal to the force per unit deflection at i.

15-May-23

The estimate to the fundamental frequency is made by recognizing p_2 , p_3 etc are natural frequencies of higher modes and larger than p_1 .

By neglecting these terms $(1/p_{22} ... 1/p_n)_2$, $1/p_1$ is larger than its true value and there fore p_1 is smaller than the exact value of the fundamental frequency

Dunkerley's Approximation

It provides a lower bound estimate for the fundamental frequency.

Let p = natural frequency of system

 p_A , p_B , p_C , p_N = exact frequencies of component systems

Then
$$\frac{1}{p^2}; \frac{1}{p_A^2}; \frac{1}{p_B^2}; \frac{1}{p_B^2}; \frac{1}{p_C^2}; \frac{1}{p_C^2};$$

The frequency so determined can be shown to be lower than the exact.

15-May-23

If natural modes of component systems A, B, C are close of each other, then the value of p determined by this procedure can be shown to be close to the exact.

Example # 2

Consider the cantilever beam shown for which the component systems A,B,C are indicated .

Since the natural modes of the system are in closer agreement in this case than for the system of the shear beam type considered in the previous example, the natural frequency computed by Dunkereley's method can be expected to be closer to the exact value than with case before.

$$p_{A}^{2} = 3 \frac{EI}{(L/3)^{3} m} = 81 \frac{EI}{mL^{3}}$$

$$p_{B}^{2} = 3 \frac{EI}{(2L/3)^{3} m} = \frac{81}{8} \frac{EI}{mL^{3}}$$

$$p_{C}^{2} = 3 \frac{EI}{L^{3} (m/2)} = 6 \frac{EI}{mL^{3}}$$

$$\frac{1}{p^{2}} \approx \frac{1}{p_{A}^{2}} + \frac{1}{p_{B}^{2}} + \frac{1}{p_{C}^{2}} = \left(\frac{1}{8}t + \frac{8}{8}t + \frac{1}{6}\right) \frac{mL^{3}}{EI}$$

$$\frac{1}{p^{2}} \approx \left(\frac{1}{9} + \frac{1}{6}\right) \frac{mL^{3}}{EI} = \frac{15}{54} \frac{mL^{3}}{EI}$$

$$p^{2} \approx 3.6 \frac{EI}{mL^{3}} (Low \ bound)$$

$$(p_{exact}^{2} = 3.7312 \frac{EI}{mL^{3}})$$

As expected the agreement is excellent in this case.

15-May-23

For $m = \mu L$, we find

15-May-23

$$\int_{0}^{l} \frac{\mu x^{2} (l-x)^{2} dx}{3lEI} + \frac{ml^{3}}{48EI} = \frac{\mu}{3lEI} [l^{2}l^{3} - 2ll^{4} + \frac{l^{5}}{5}] + \frac{ml^{3}}{48EI}$$

$$= \frac{\mu l^{4}}{3EI} [\frac{1}{3} - \frac{1}{2} + \frac{1}{5}] + \frac{ml^{3}}{48EI} = \frac{\mu l^{4}}{90EI} + \frac{ml^{3}}{48EI}$$

$$\frac{\pi^{4}}{3.117} \frac{EI}{\mu L^{4}} \approx p_{1}^{2} \approx \frac{\pi^{4}}{3} \frac{EI}{\mu L^{4}}$$
Consider all modes,
$$p_{1}^{2} = \frac{\mu l^{4}}{\pi^{4} EI} \exp \left[\frac{1}{100} \right] + \frac{ml^{3}}{48EI}$$

$$p_{1}^{2} = \frac{\mu l^{4}}{\pi^{4} EI} \exp \left[\frac{1}{100} \right] + \frac{ml^{3}}{48EI}$$

Limitation of procedures:

• One cannot improve the accuracy of the solution (depends on the deflected shape of structure) in a systematic manner.

• Extension of procedure : Rayleigh - Ritz

REFERENCE LINKS

1. Fisher, J.W. (1970) Design of composite beams with formed metal deck. Eng. J. Amer. Inst. Steel Constr., 7, July, 88–96.

2. Wang, Y.C. (2002) Steel and Composite Structures – Analysis and Design for Fire Safety. Spon, London.

3. British Standards Institution BS EN 1994. Design of composite steel and concrete structures. Part 1-1, General rules and rules for buildings. To be published, British Standards Institution, London.

THANK YOU