

(An Autonomous Institution) Coimbatore - 641 035 DEPARTMENT OF MATHEMATICS Covariance, Correlation and Regression

Covariance:

* IF x and y are two dimensional handon variable. then covariance of x and y is defend as

 $Cov(x, y) = E(xy) - E(x) \cdot E(y)$

* If x and y are Prodependent, then

$$E(xy) = E(x) \cdot E(y)$$

 \Rightarrow Cov (x, y) = E(x)E(y) - E(x)E(y)

: It is uncorrelated.

Result:

cov(ax, by) = ab cov(x, y)

②. Cov(ax+b, cy+d) = ac Cov(x, y)

Correlation:

$$y_{xy} = \frac{\cos(x, y)}{6_x 6_y}$$

J→ Standard Deviation Valance

$$y_{xy} = \frac{\text{cov}(x, y)}{\sqrt{\text{var} x} \sqrt{\text{var} y}}$$

Reglession:

Reglession is the average relationship

between two of male variables

Regression fine:

$$x - \overline{x} = bxy (y - \overline{y})$$

$$y-\overline{y} = b_{yx} (x-$$

$$b_{xy} = 2 \frac{6x}{6y}$$

(An Autonomous Institution)
Coimbatore – 641 035
DEPARTMENT OF MATHEMATICS
Covariance, Correlation and Regression

Properties:

*
$$\bar{x} = \frac{sx}{n}$$
 and $\bar{y} = \frac{sy}{n}$

J. Let X and Y be disurte landom valuable with pursability mass function
$$P(x, y) = \frac{x+y}{21}$$
, find correlation coefficient. $x=1, 2, 3; y=1,2$ solo:

$$E(x) = \frac{46}{21}$$

$$E(y) = E y P(y)$$

$$= 1 \left(\frac{9}{21} \right) + 9 \left(\frac{12}{21} \right) = \frac{9+24}{21}$$

$$= \frac{33}{21}$$

$$E(xy) = \underbrace{E(xy)P(x,y)}_{=1(1)\left(\frac{2}{21}\right)} + \underbrace{1(2)\left(\frac{3}{21}\right)}_{=1(1)\left(\frac{2}{21}\right)} + \underbrace{1(2)\left(\frac{3}{21}\right)}_{=1(1)\left(\frac{4}{21}\right)} + \underbrace{3(1)\left(\frac{4}{21}\right)}_{=1(1)\left(\frac{4}{21}\right)} + \underbrace{3(2)\left(\frac{5}{21}\right)}_{=1(1)\left(\frac{4}{21}\right)}$$

$$= \underbrace{2+6+6+16+12+30}_{=21}$$

$$E(x^{2}) = \frac{12}{21}$$

$$E(x^{2}) = 2 x^{2} P(x)$$

$$= 1^{2} \frac{5}{21} + 2^{2} \frac{7}{21} + 3^{2} \frac{9}{21}$$

$$= \frac{5}{21} + 28 + 81$$

$$E(x^{2}) = \frac{114}{21}$$

$$Val(x) = E(x^{2}) - [E(x)]^{2}$$

$$= \frac{114}{21} - (\frac{46}{21})^{2}$$

$$= \frac{114}{21} - \frac{2116}{441}$$

$$Vau(x) = \frac{278}{441}$$

$$E(y^{2}) = \sum y^{2} P(y)$$

$$= 1\left(\frac{9}{21}\right) + 4\left(\frac{72}{21}\right)$$

$$= \frac{9+48}{21}$$

$$= \frac{57}{21}$$

$$Vou(y) = E(y^{2}) - [E(y)]^{2}$$

$$= \frac{57}{21} - \left(\frac{33}{21}\right)^{2}$$

$$= \frac{57}{21} - \frac{1089}{441}$$

$$Val(4) = \frac{108}{441}$$

$$cov(x, y) = E(xy) - E(x) E(y)$$

$$= \frac{72}{21} - \frac{46}{21} \left(\frac{33}{21}\right)$$

$$= \frac{72}{21} - \frac{1518}{441}$$

$$= \frac{1512 - 1518}{441}$$

$$cov(x,y) = \frac{-6}{441}$$

$$y = \frac{\cot(x, y)}{6x \cdot 6y}$$

$$= \frac{-6/441}{\sqrt{278} \sqrt{\frac{108}{441}}}$$

$$= \frac{-0.014}{0.393}$$

$$p = -0.036$$

(An Autonomous Institution)
Coimbatore – 641 035
DEPARTMENT OF MATHEMATICS
Covariance, Correlation and Regression

R]. Suppose that the Two Dymensional R. Vc. (x, y) bas the doint Polf

$$f(x, y) = \begin{cases} x + y, & 0 < x < 1 & 0 < y < 1 \\ 0, & 0 < y < 1 \end{cases}$$

i). Obtalo the correption coeffectent blu xxy.
ii). check whether xxy are prodependent.
Soln.

WDE of X:

$$f(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

$$= \int_{0}^{1} (x + y) \, dy$$

$$= \left(xy + \frac{y^2}{2}\right)^{1}$$

$$F(x) = 90 + \frac{1}{2} , 0 < x < 1$$

MDF of Y:

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$= \int_{0}^{1} (x + y) dy$$

$$= \left[\frac{xu}{2} + xy\right]^{1}$$

$$f(y) = y + \frac{1}{2}$$
, $0 < y < 1$

$$E(\alpha) = \int_{-\infty}^{\infty} \alpha F(\alpha) d\alpha$$

$$= \int_{0}^{1} x (x + \frac{1}{2}) dx$$

$$= \int_{0}^{1} (x^{2} + \frac{1}{2}x) dx$$

$$= \left(\frac{x^{3}}{3} + \frac{1}{2}\frac{x^{2}}{2}\right)^{0}$$

$$= \frac{1}{3} + \frac{1}{4} - 0$$

$$= \left(\frac{x}{3}\right)^{1} + \frac{1}{4} - 0$$

$$= \left(\frac{y}{3}\right)^{1} + \frac{1}{4} + \frac{1}{4} + \frac{y^{2}}{2} = \frac{1}{3} + \frac{1}{4}$$

$$= \left(\frac{y^{3}}{3} + \frac{1}{2}\frac{y^{2}}{2}\right)^{1}$$

$$= \frac{1}{3} + \frac{1}{4}$$

$$= \left(\frac{y}{3}\right)^{1} + \frac{1}{4} + \frac{1}{4}$$

$$= \left(\frac{y}{3}\right)^{1} + \frac{1}{4}$$

$$E(xy) = \int_{-\infty}^{\infty} xy + (x, y) dx dy$$

$$= \int_{0}^{\infty} xy (x+1) dx dy$$

$$= \int_{0}^{\infty} (x^2y + xy) dx dy$$

(An Autonomous Institution)
Coimbatore – 641 035
DEPARTMENT OF MATHEMATICS
Covariance, Correlation and Regression

$$= \int_{0}^{1} \left[\frac{x^{3}y}{3} + \frac{x^{2}y^{2}}{2} \right] dy$$

$$= \int_{0}^{1} \left(\frac{y}{3} + \frac{y^{2}}{2} \right) dy$$

$$= \left(\frac{y^{2}}{6} + \frac{y^{3}}{6} \right)^{1}$$

$$= \frac{2}{6}$$

$$E(xy) = \frac{1}{3}$$

$$E(x^{9}) = \int_{0}^{\infty} x^{2} + f(x) dx$$

$$= \int_{0}^{1} x^{2} \left(x + \frac{1}{2} \right) dx$$

$$= \int_{0}^{1} (x^{3} + \frac{1}{2} x^{2}) dx$$

$$= \left(\frac{x^{4}}{4} + \frac{1}{2} \frac{x^{3}}{3} \right)^{1}$$

$$= \frac{1}{4} + \frac{1}{6} - 0$$

$$E(x^{2}) = \int_{-\infty}^{\infty} y^{2} + f(y) dy = \int_{0}^{1} y^{2} \left(y + \frac{1}{2} \right) dy$$

$$= \int_{0}^{1} (y^{3} + \frac{1}{2} y^{2}) dy$$

$$= \int_{0}^{1} (y^{3} + \frac{1}{2} y^{2}) dy$$

 $=\left(\frac{y^4}{4} + \frac{1}{2} + \frac{y^3}{3}\right)^{1}$

$$= \frac{1}{4} + \frac{1}{6} - 0$$

$$= \frac{10}{24}$$

$$= \frac{1}{3} - \frac{7}{10} \left(\frac{7}{10} \right)$$

$$= \frac{1}{3} - \frac{7}{10} \left(\frac{7}{10} \right)$$

$$= \frac{-1}{144} \neq 0$$

$$\therefore x \text{ and } y \text{ are dependent.}$$

$$\therefore x \text{ and } y \text{ are dependent.}$$

$$= \frac{10}{24} - \left(\frac{7}{10} \right)^2$$

$$= \frac{10}{24} - \left(\frac{7}{10} \right)^2$$

$$= \frac{10}{24} - \frac{49}{144}$$

$$6x = \frac{11}{144}$$

$$6x = \frac{51}{12}$$

$$6y = \frac{1}{144}$$

$$6y = \frac{71}{12}$$

$$6y = \frac{11}{144}$$

$$6y = \frac{11}{12}$$

$$6y = \frac{11}{144}$$

$$6y = \frac{11}{12}$$

$$\frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{12} = \frac{1}{12}$$

(An Autonomous Institution)
Coimbatore – 641 035
DEPARTMENT OF MATHEMATICS
Covariance, Correlation and Regression

coefficient of correlation [If the Protesval's

$$\mathcal{Y}(x,y) = \frac{\mathcal{C}ov(x,y)}{\mathcal{C}_{x} - \mathcal{C}_{y}}$$

where
$$cov(x, y) = \frac{z \times y}{n} - \overline{x}\overline{y}$$
 and $\overline{x} = \frac{z \times y}{n}$

$$\overline{y} = \frac{z \times y^{2}}{n} - \overline{y}^{2}$$

$$\overline{y} = \frac{z \times y^{2}}{n} - \overline{y}^{2}$$

J. Calculate the correlation coefficient for the following beights (in inches) of father's x and their son's y.

x: 65 66 67 67 68 69 70 72 y: 67 68 65 68 72 72 69 71 80ln.

				2 3 1	
	X	У	×y	ת	ya
	65	67	4355	4925	4489
	66	68	4488	4356	4624
	67	65	4355	4489	4225
	67	68	4556	4489	4624
	68	72	4896	4624	
	69	72	4968	4761	5184
	To	69	4830	4900	5184
	Ta	TI	5112	5184	5041
2	X= 544	5y=	2xy=	37028	24°= 88132
	2-1-1				06/32

$$\bar{x} = \frac{5x}{D} = \frac{544}{8} = 68$$

$$\bar{y} = \frac{5y}{D} = \frac{552}{9} = 69$$
 and $\bar{x}\bar{y} = 68(69) = 4692$

$$(oy(x, y) = \frac{2xy}{h} - \overline{x}\overline{y} = \frac{37560}{8} - 4692$$

$$Cov(x,y) = 3$$

$$\sqrt{x} = \sqrt{\frac{2}{8}} - \sqrt{x^2} = \sqrt{\frac{37028}{8}} - (68)^{8}$$

$$G_{y} = \sqrt{\frac{2y^{2}}{n}} - \sqrt{y^{2}} = \sqrt{\frac{38132}{8}} - (69)^{2}$$

$$6y = 2.345$$

$$y = \frac{\text{cov}(x, y)}{6x} = \frac{3}{(2.121)(2.345)}$$

$$y = 0.6032$$