
Keypad Interfacing with PIC16F877A

Keypad is an input device and it is a vital part of the user interface in many consumer

devices and instruments such as telephones, remotes calculators, etc. A 4*4 matrix keypad

consists of 16 keys which are arranged into rows and columns such that it leaves only 8 pins for

interfacing with the devices. The Matrix keypad interfaces 16 keys to the microcontroller port

using only 8 pins and a suitable firmware scans the pins for detecting the keypress. In this

tutorial, we are discussing the keypad interfacing with PIC16F877A microcontroller and the

firmware implementation to identify the keypress in the 4*4 keypad matrix.

Keypad Hardware

The hardware part of the keypad before writing the firmware as the firmware logic

depends on the hardware connections. Similar to the General convention we will consider the

horizontal connections as rows and the vertical connections as columns. The 4*4 matrix keypad

is interfaced with one of the 8-bit ports of the microcontroller. These types of keypad modules

consist of 4 ROWS and 4 COLUMNS. The 16 keys can be arranged into rows and columns such

that we can identify each key as a combination of row and column address similar to matrix

element.

The LSB of the microcontroller port will be considered as rows and MSB as columns.

The MSB pins will be taken as inputs and LSB pins as output. The input pins can be connected

in a pull-up and pull-down mode. The default state of the input pins connected in pull-up mode

will be high and similarly, in pull-down mode, it will be LOW. The programmer can set these

conventions according to their convenience but it is important to match these conventions both in

hardware and firmware. Matrix keypad pinout will have a slight difference according to the

manufacturer and please refer the datasheet for the pinout details of the keypad module you are

using. You can also build the matrix keypad by arranging the switches in the matrix format as

shown below.

Working Principle

Let us consider the input pins connected in pull-up mode. The default state of input pins

will be high in the pull-up mode. When a switch has pressed the column and row corresponding

to the pressed key will be shorted and thus the value in the output line will be reflected in the

input. we will write values to row pins in order to override the default state of the input pins

when the key is pressed. The logic low is written to one of the rows and other row pins will be

kept high as in the case of pull up mode. we will scan the column pins and the column pins

corresponding to the pressed key will reflect a logic low. We will continue this procedure and

write a logic low to other row pins and check the columns pins to detect the keypress.

FIRMWARE

https://openlabpro.com/wp-content/uploads/2019/10/keypad-Interfacing-with-PIC16F877A.png
https://openlabpro.com/wp-content/uploads/2019/10/keypad-Interfacing-with-PIC16F877A-1.png

We will have to connect the keypad to one of the controller ports. The row pins are connected to

the LSB of PORTD AND Column pin to the MSB of PORTD.

We will set the direction of row pins as output and the column pins as inputs.

TRISD=0xF0; /*The direction of(0-3)row pins are set as output and

 (4-7)coloumn pins are set as inputs*/

We have to create a function to detect the keypress. we will update the row values and do a

column scan to detect the pressed key. The row pins are connected to LSB of PORT B and

column pins in the MSB. You have to connect the inputs in either pullup or pull down mode. We

will consider the pull-up mode here and the default input states will be high. When a key has

pressed the row and column of that key will be shorted and the row value will be reflected in the

column.

when a keypress occurs and a logic zero arrives at that row the column read will change the

default high to low and we can confirm the keypress. we will write the logic zero to the row pins

one by one and a column pin will be scanned and checked the values against a switch case to

identify the matched column and the pressed key.

we will write a logic low to the R0 pin initially and all the other row pins and column pins are

kept high. The hexadecimal number corresponding to the above condition is OXFE and it is

written to PORTD. We will mask the column pins and it is read to a variable. The column value

is checked against a switch case to identify the pressed key. if the 1st key is pressed the RO and

C0 will be shorted and the value 0 appears in the column. The switch case value 0XE0 matches

in that case. A similar procedure is followed for the rest of the rows. The While statement waits

till the key pressed state changes and avoids denouncing and also we can add a small delay to

ensure a proper reading.

char key()

https://openlabpro.com/wp-content/uploads/2019/10/matrix-keypad-PIC-Microcontroller-pin-mapping.png

{

int e;

 while(1)

 {

 PORTD = 0XFE; /*First Row made low and scanning the columns*/

 __delay_ms(10);

 e = PORTD & 0xF0;

 switch(e)

 {

 case 0xE0:

 while(!(PORTDbits.RD4));

 return('1');

 case 0xD0:

 while(!(PORTDbits.RD5));

 return('2');

 case 0xB0:

 while(!(PORTDbits.RD6));

 return('3');

 case 0x70:

 while(!(PORTDbits.RD7));

 return('A');

 }

 PORTD = 0XFD; /*Second Row made low and scanning the columns*/

 __delay_ms(10);

 e = PORTD & 0xF0;

 switch(e)

 {

 case 0xE0:

 while(!(PORTDbits.RD4));

 return('4');

 case 0xD0:

 while(!(PORTDbits.RD5));

 return('5');

 case 0xB0:

 while(!(PORTDbits.RD6));

 return('6');

 case 0x70:

 while(!(PORTDbits.RD7));

 return('B');

 }

 PORTD = 0XFB; /*Third row made low and scanning the columns*/

 __delay_ms(10);

 e = PORTD & 0xF0;

 switch(e)

 {

 case 0xE0:

 while(!(PORTDbits.RD4));

 return('7');

 case 0xD0:

 while(!(PORTDbits.RD5));

 return('8');

 case 0xB0:

 while(!(PORTDbits.RD6));

 return('9');

 case 0x70:

 while(!(PORTDbits.RD7));

 return('C');

 }

 PORTD = 0XF7; /*Fourth row made low and scanning the columns*/

 __delay_ms(10);

 e = PORTD & 0xF0;

 switch(e)

 {

 case 0xE0:

 while(!(PORTDbits.RD4));

 return('*');

 case 0xD0:

 while(!(PORTDbits.RD5));

 return('0');

 case 0xB0:

 while(!(PORTDbits.RD6));

 return('#');

 case 0x70:

 while(!(PORTDbits.RD7));

 return('D');

 }

 }

}

we will call the key function continuously in the main function to detect the keypress. We can

show the detected keypress in any of the display modules according to your convenience.

 while(1)

 {

 a=key();

 }

we can develop a similar code for pull-down mode and in that case, the default column state will

be LOW. We have to write a logic high to row pins one by one and we will scan the column pins

to detect the keypress.

	Keypad Interfacing with PIC16F877A
	Keypad is an input device and it is a vital part of the user interface in many consumer devices and instruments such as telephones, remotes calculators, etc. A 4*4 matrix keypad consists of 16 keys which are arranged into rows and columns such that it...
	Keypad Hardware
	The hardware part of the keypad before writing the firmware as the firmware logic depends on the hardware connections. Similar to the General convention we will consider the horizontal connections as rows and the vertical connections as columns. The 4...
	The LSB of the microcontroller port will be considered as rows and MSB as columns. The MSB pins will be taken as inputs and LSB pins as output. The input pins can be connected in a pull-up and pull-down mode. The default state of the input pins connec...
	Working Principle
	Let us consider the input pins connected in pull-up mode. The default state of input pins will be high in the pull-up mode. When a switch has pressed the column and row corresponding to the pressed key will be shorted and thus the value in the output ...
	FIRMWARE
	We will have to connect the keypad to one of the controller ports. The row pins are connected to the LSB of PORTD AND Column pin to the MSB of PORTD.
	We will set the direction of row pins as output and the column pins as inputs.
	TRISD=0xF0; /*The direction of(0-3)row pins are set as output and
	(4-7)coloumn pins are set as inputs*/
	We have to create a function to detect the keypress. we will update the row values and do a column scan to detect the pressed key. The row pins are connected to LSB of PORT B and column pins in the MSB. You have to connect the inputs in either pullup ...
	we will write a logic low to the R0 pin initially and all the other row pins and column pins are kept high. The hexadecimal number corresponding to the above condition is OXFE and it is written to PORTD. We will mask the column pins and it is read to ...
	char key()
	{
	int e;
	while(1)
	{ (1)
	PORTD = 0XFE; /*First Row made low and scanning the columns*/
	__delay_ms(10);
	e = PORTD & 0xF0;
	switch(e)
	{ (2)
	case 0xE0:
	while(!(PORTDbits.RD4));
	return('1');
	case 0xD0:
	while(!(PORTDbits.RD5));
	return('2');
	case 0xB0:
	while(!(PORTDbits.RD6));
	return('3');
	case 0x70:
	while(!(PORTDbits.RD7));
	return('A');
	}
	PORTD = 0XFD; /*Second Row made low and scanning the columns*/
	__delay_ms(10); (1)
	e = PORTD & 0xF0; (1)
	switch(e) (1)
	{ (3)
	case 0xE0: (1)
	while(!(PORTDbits.RD4)); (1)
	return('4');
	case 0xD0: (1)
	while(!(PORTDbits.RD5)); (1)
	return('5');
	case 0xB0: (1)
	while(!(PORTDbits.RD6)); (1)
	return('6');
	case 0x70: (1)
	while(!(PORTDbits.RD7)); (1)
	return('B');
	} (1)
	PORTD = 0XFB; /*Third row made low and scanning the columns*/
	__delay_ms(10); (2)
	e = PORTD & 0xF0; (2)
	switch(e) (2)
	{ (4)
	case 0xE0: (2)
	while(!(PORTDbits.RD4)); (2)
	return('7');
	case 0xD0: (2)
	while(!(PORTDbits.RD5)); (2)
	return('8');
	case 0xB0: (2)
	while(!(PORTDbits.RD6)); (2)
	return('9');
	case 0x70: (2)
	while(!(PORTDbits.RD7)); (2)
	return('C');
	} (2)
	PORTD = 0XF7; /*Fourth row made low and scanning the columns*/
	__delay_ms(10); (3)
	e = PORTD & 0xF0; (3)
	switch(e) (3)
	{ (5)
	case 0xE0: (3)
	while(!(PORTDbits.RD4)); (3)
	return('*');
	case 0xD0: (3)
	while(!(PORTDbits.RD5)); (3)
	return('0');
	case 0xB0: (3)
	while(!(PORTDbits.RD6)); (3)
	return('#');
	case 0x70: (3)
	while(!(PORTDbits.RD7)); (3)
	return('D');
	} (3)
	} (4)
	} (5)
	we will call the key function continuously in the main function to detect the keypress. We can show the detected keypress in any of the display modules according to your convenience.
	while(1) (1)
	{ (6)
	a=key();
	} (6)
	we can develop a similar code for pull-down mode and in that case, the default column state will be LOW. We have to write a logic high to row pins one by one and we will scan the column pins to detect the keypress.

