

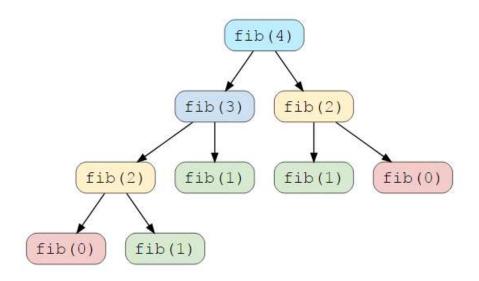
Unit III

Dynamic Programming and Greedy Technique

- Dynamic Programming
 - Computing a Binomial Coefficient
 - Warshall's algorithm
 - Floyd's algorithm
 - Optimal Binary Search Trees
 - Knapsack Problem and Memory functions

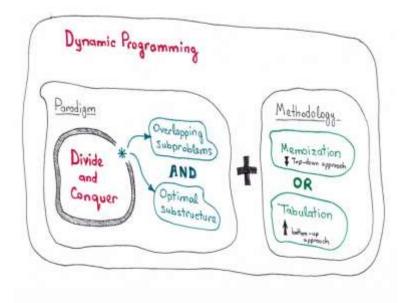
Dynamic Programming

- Dynamic programming pblm □ similar sub problems □ reuse the solution
- Characteristics
 - Overlapping sub problems solving same sub problems
 - Optimal substructure property optimal solution can be built from sub problem
 - Example : Fibonacci series



Dynamic Programming

- Methodology
 - Top-down with memoization
 - Storing the result of already solved sub-problem is called memoization
 - Bottom-up with Tabulation
 - Sub-problems (bottom up)



Difference between Divide and conquer and Dynamic Programming

Divide and conquer	Dynamic Programming
Sub problems are not dependent on each other	Sub problems are dependent on each other
Doesn't store the solution of sub- problem	Stores the solution of sub problem

Computing a Binomial Coefficient

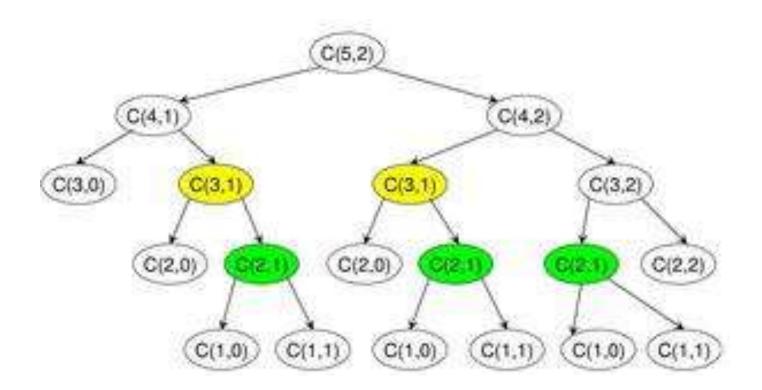
- Binomial coefficient computation of no of ways r items that can be chosen from n elements C(ⁿ_r)
- C(n, k) = n! / (n-k)! * k!
- C(n, k) = C(n-1, k-1) + C(n-1, k), n > k, k > 0
- C(n,0) = 1, C(n,n) = 1
- <u>Example:</u>

*

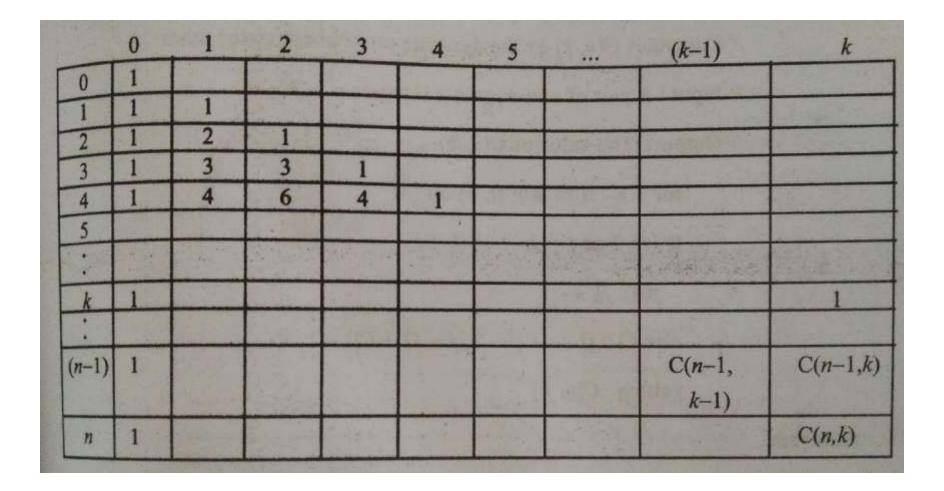
- 1^{st} formula : C (4,2) \square 4! /(2!) * 2! \square 24 / 4 \square 6
- 2^{nd} formula : $C(4,2) \square C(3,1) + C(3,2) \square \dots \square 6$
- C (4,2) □ how many two combinations of elements can be picked from set of 4 elements
- Example: possibilities of 1,2,3,4 □ (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

Computing a Binomial Coefficient

- Example : C (5,2)
- C(n, k) = C(n-1, k-1) + C(n-1, k), n > k, k > 0
- C(n,0) = 1, C(n,n) = 1



Computing a Binomial Coefficient - Tabulation



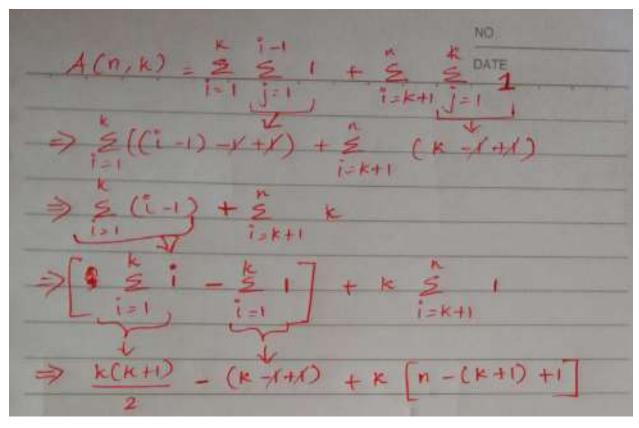
*

Computing a Binomial Coefficient - Algorithm

Algorithm Binomial(n, k)for $i \leftarrow 0$ to n do // fill out the table row wise for i = 0 to min(i, k) do if j==0 or j==i then $C[i, j] \leftarrow 1$ // IC else $C[i, j] \leftarrow C[i-1, j-1] + C[i-1, j]$ // recursive relation return C[n, k]

Computing a Binomial Coefficient - Analysis

- Cost of the algorithm table
- Sum 2 parts (upper and lower triangle)
- A(n, k) =sum for upper triangle + sum for the lower rectangle



Computing a Binomial Coefficient - Analysis

$$\frac{1}{2} \frac{k^{2} + k}{2} - k + k \left[n - k - k + i\right]}{2}$$

$$\frac{1}{2} \frac{k^{2} + k}{2} - 2k + 2 \left(nk - k^{2}\right)}{2}$$

$$\frac{1}{2} \frac{k^{2} - k}{2} + 2nk - 2k^{2}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{$$