



# Robotics & Automation – Unit 2.5

#### DR. M.ELANGOVAN

PROFESSOR, DEPT. OF AEROSPACE ENGINEERING SNS COLLEGE OF TECHNOLOGY, COIMBATORE

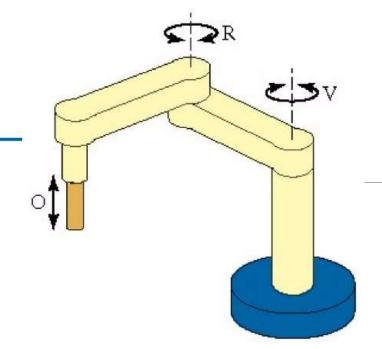






## Second Unit of the syllabus

Robot-Basic concepts, Need, Laws of robotics, History, Robot Anatomy, specifications. Robot configurations-cartesian, cylinder, polar and articulate. Robot wrist mechanism, Precision and accuracy of robot. Endeffector and Grippers- Classification of robot- progressive advancement in robots, anatomy: links, joint and joint notation scheme, degree of freedom, arm configuration, wrist configuration - Human arm characteristics - applications







#### **SCARA Robot**



- Notation VRO
- SCARA stands for Selectively Compliant Assembly Robot Arm
- Similar to jointed-arm robot except that vertical axes are used for shoulder and elbow joints to be compliant in horizontal direction for vertical insertion tasks











#### Joint Drive Systems







Uses electric motors to actuate individual joints

- Preferred drive system in today's robots
- Hydraulic
  - Uses hydraulic pistons and rotary vane actuators
  - Noted for their high power and lift capacity
- Pneumatic
  - Typically limited to smaller robots and simple material transfer applications









### Robot Control Systems

- Limited sequence control pick-and-place operations using mechanical stops to set positions
- Playback with point-to-point control records work cycle as a sequence of points, then plays back the sequence during program execution
- Playback with continuous path control greater memory capacity and/or interpolation capability to execute paths (in addition to points)
- Intelligent control exhibits behavior that makes it seem intelligent, e.g., responds to sensor inputs, makes decisions, communicates with humans











- 1. Material handling applications
  - Material transfer pick-and-place, palletizing
  - Machine loading and/or unloading
- 2. Processing operations
  - Welding
  - Spray coating
  - Cutting and grinding
- 3. Assembly and inspection

#### TOP 10 COUNTRIES BY ROBOT DENSITY (Industrial robots per 10 000 manufacturing workers)





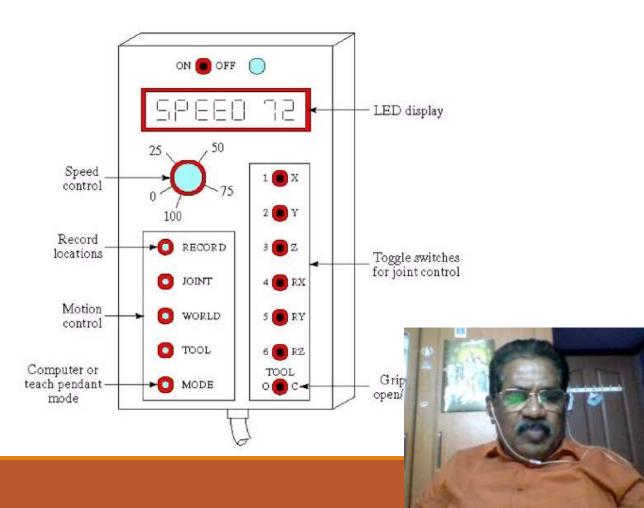


# **Robot Programming**



- Leadthrough programming
  - Work cycle is taught to robot by moving the manipulator through the required motion cycle and simultaneously entering the program into controller memory for later playback
- Robot programming languages
  - Textual programming language to enter commands into robot controller
- Simulation and off-line programming
  - Program is prepared at a remote computer terminal and downloaded to robot controller for execution without need for leadthrough methods












- 1. Powered leadthrough
  - Common for point-topoint robots
  - Uses teach pendant
- 2. Manual leadthrough
  - Convenient for continuous path control robots
  - Human programmer physical moves manipulator







# Leadthrough Programming Advantages



- Advantages:
  - Easily learned by shop personnel
  - Logical way to teach a robot
  - No computer programming
- Disadvantages:
  - Downtime during programming
  - Limited programming logic capability
  - Not compatible with supervisory control









#### **Motion Commands**

MOVE P1

HERE P1 - used during lead through of manipulator

MOVES P1

DMOVE(4, 125)

APPROACH P1, 40 MM

**DEPART 40 MM** 

DEFINE PATH123 = PATH(P1, P2, P3)

**MOVE PATH123** 

SPEED 75









#### Interlock and Sensor Commands

Interlock Commands

WAIT 20, ON

SIGNAL 10, ON

SIGNAL 10, 6.0

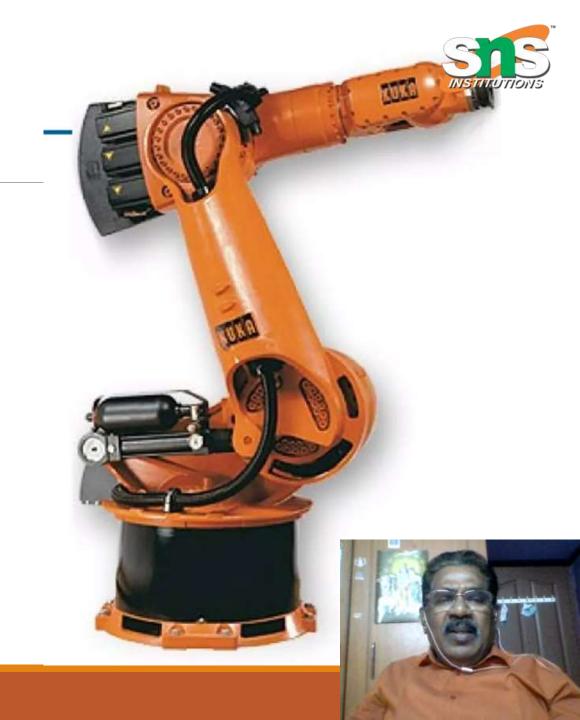
**REACT 25, SAFESTOP** 

**Gripper Commands** 

**OPEN** 

**CLOSE** 

**CLOSE 25 MM** 


CLOSE 2.0 N





# Summary

- Joint Drive systems
- Robot control systems
- Programming of robots







INSTITUTIONS