

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

UNIT 2 : DEVICES AND EMERGING BUS STANDARDS

TOPIC 2.2 : Communication from serial devices-I2C

COMMUNICATION FROM SERIAL DEVICES

Outline

- Introduction to Serial Buses
- UART
- SPI
- I2C

2/20/2023 2/20/2023 19ECT312/Emb.Sys / Dr.Sivanaynkathia/R.Solfesson//ECE//SWSCT

2/17

What is I²C (or I2C)?

- Inter-Integrated Circuit
- Pronounced "eye-squared-see"
- Two-wire serial bus protocol
- Invented by Philips in the early 1980's
 - That division now spun-off into NXP

Where is it Used?

- Originally used by Philips inside television sets
- Now very common in peripheral devices intended for embedded systems use
 - Philips, National Semiconductor, Xicor, and Siemens , ...
- Also used in the PC world
 - Real time clock
 - Temperature sensors

Basic Description

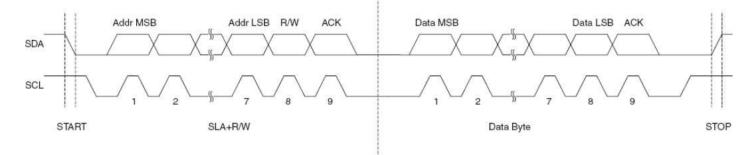
- Two-wire serial protocol with addressing capability
- Speeds up to 3.4 Mbit/s
- Multi-master/Multi-slave

Electrical Wiring

- Two lines
 - SDA (data)
 - SCL (clock)
- Open-collector
 - Very simple interfacing between different voltage levels

Clock

- Not a traditional clock
- Normally high (kept high by the pull-up)
- Pulsed by the master during data transmission (whether the master is transmitter or receiver)
- Slave device can hold clock low if it needs more time



A Basic I2C Transaction

- Master always initiates transactions
- Start Condition
- Address
- Data
- Acknowledgements
- Stop Condition

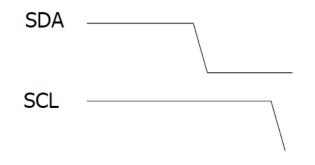
Source: ATMega8 Handbook

19ECT312/Emb.Sys / Dr.Sivasankari/Professor/ECE/SNSCT

2/20/2023

A Basic I2C Transaction

- Transmitter/Receiver differs from Master/Slave
- Master initiates transactions, slave responds
- Transmitter sets data on the SDA line, Receiver acknowledges
 - For a read, slave is transmitter
 - For a write, master is transmitter



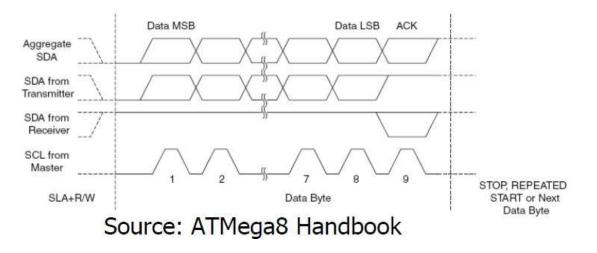
Start Condition

Master pulls SDA low while SCL is high

 Normal SDA changes only happen while SCL is low

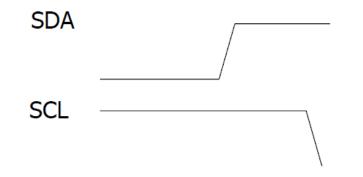
Address Transmission

- Data is always sampled on rising edge of clock
- Address is 7 bits
- An 8th bit indicates read or write
 - High for read, low for write
- Addresses assigned by Philips/NXP (for a fee)

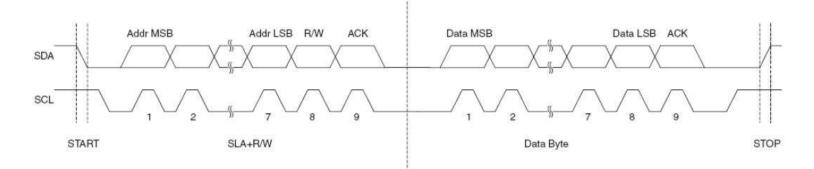


Data transmission

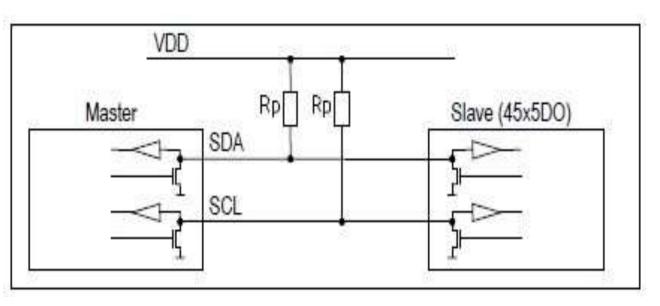
- Transmitted just like address (8 bits)
- For a write, master transmits, slave acknowledges
- For a read, slave transmits, master acknowledges
- Transmission continues with subsequent bytes until master creates stop condition

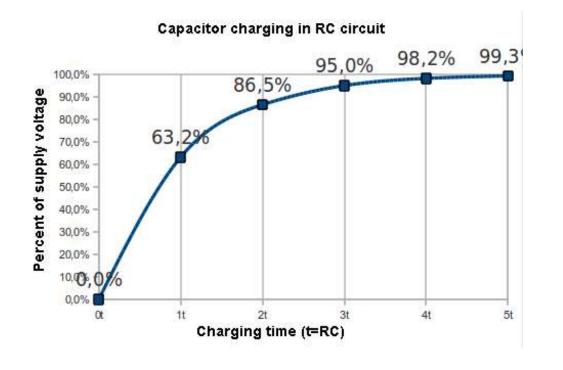


Stop Condition


Master pulls SDA high while SCL is high
Also used to abort transactions

Another look at I2C




Source: ATMega8 Handbook

Exercise: How fast can I2C run?

- How fast can you run it?
- Assumptions
 - 0's are driven
 - 1's are "pulled up"
- Some working figures ullet
 - $-R_{p} = 10 \text{ k}\Omega$
 - $-C_{cap} = 100 \text{ pF}$
 - $-V_{DD} = 5 V$
 - $V_{in_high} = 3.5 V$
- Recall for RC circuit
 - $-V_{cap}(t) = V_{DD}(1-e^{-t/\tau})$
 - Where $\tau = RC$

Exercise: Bus bit rate vs Useful data rate

- An I2C "transactions" involves the following bits
 - <S><A6:A0><R/W><A><D7:D0><A><F>
- Which of these actually carries useful data?
 - <S><A6:A0><R/W><A><D7:D0><A><F>
- So, if a bus runs at 400 kHz
 - What is the clock period?
 - What is the data throughput (i.e. data-bits/second)?
 - What is the bus "efficiency"?

SUMMARY & THANK YOU

2/20/2023 2/20/2023 19ECT312/Emb.Sys / Dr.Sivanaynkathia P.Solfe & M.//ECE//SNASCIT

17/17