SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

UNIT 3

LFC control of Single area and Multi area system

STATIC SPEED-POWER CURVE

- From,

$$
\Delta P_{M}=\Delta P_{C}-\frac{1}{R} \Delta \omega
$$

- Primary control: Immediate change corresponding to sudden change of load (frequency)
- Secondary control: Change in setting control power to maintain operating frequency.
- The higher R (regulation), the better.

AGC FOR SINGLE AREA

- System Modeling
- Single Generator
- Multi Generators, special case: two generators

LFC FOR SINGLE AREA

AGC FOR MULTI AREAS

$>$ During transient period, sudden change of load causes each area generation to react according to its frequency-power characteristics.This is "called primary control".
$>$ This change also effects steady state frequency and tie-line flows between areas.
$>$ We need to
$>$ Restore system frequency,
$>$ Restore tie-line capacities to the scheduled value, and,
$>$ Make the areas absorb their own load.
This is called "secondary control".

AGC FOR MULTIPLE AREA SYSTEM

AGC FOR 2-GENERATOR: BLOCK DIAGRAM

Steady state: New (lower) system

AGC FOR 2-GENERATOR: STATIC SPEED-POWER CURVE

$>$ Load increases.
$>$ Frequency drops.
> Steady state is reached when frequency of both generators is the same.

STEADY STATE FREQUENCY CALCULATION: 2 GENERATORS

- From $\Delta P_{M i}=M_{i} \Delta \dot{\omega}_{i}+\tilde{D}_{i} \Delta \omega_{i}+\Delta P_{L i}+\Delta P_{i}=\tilde{D}_{i} \Delta \omega_{i}+\Delta P_{L i}+\Delta P_{i}$
- Consider the frequency at steady state,

$$
\begin{aligned}
& \Delta P_{M 1}=\tilde{D}_{1} \Delta \omega_{1}+\Delta P_{L 1}+\Delta P_{\text {tie-line }} \\
& \Delta P_{M 2}=\tilde{D}_{2} \Delta \omega_{2}+\Delta P_{L 2}-\Delta P_{\text {tie-line }}
\end{aligned}
$$

- But, $\Delta \omega=\Delta \omega_{1}=\Delta \omega_{2}, \Delta P_{M 1}=-\frac{1}{R_{1}} \Delta \omega$, and $\Delta P_{M 2}=-\frac{1}{R_{2}} \Delta \omega$
- Then,

$$
\Delta \omega=\frac{-\Delta P_{L 1}-\Delta P_{L 2}}{\left(\tilde{D}_{1}+\tilde{D}_{2}+\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)}
$$

