

SNS COLLEGE OF TECHNOLOGY

Coimbatore-37. An Autonomous Institution

COURSE NAME : 19ITB201 & DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR/ IV SEMESTER

UNIT – 3 DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE Topic:

Dynamic Programming: Computing a Binomial Coefficient

Dr.B.Vinodhini

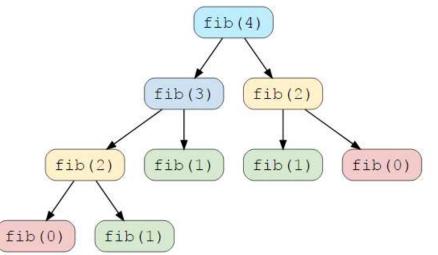
Associate Professor

Department of Computer Science and Engineering

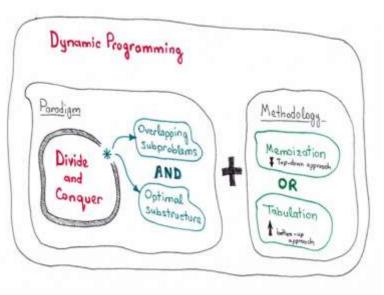
- Dynamic Programming
 - Computing a Binomial Coefficient
 - Warshall's algorithm
 - Floyd's algorithm
 - Optimal Binary Search Trees
 - Knapsack Problem and Memory functions

Dynamic Programming: Computing a Binomial Coefficient

- Dynamic programming pblm → similar sub problems → reuse the solution
- Characteristics
 - Overlapping sub problems solving same sub problems
 - Optimal substructure property optimal solution can be built from sub problem
 - Example : Fibor



- Methodology
 - Top-down with memoization
 - Storing the result of already solved sub-problem is called memoization
 - Bottom-up with Tabulation
 - Sub-problems (bottom up)



Difference between Divide and conquer and Dynamic Programming

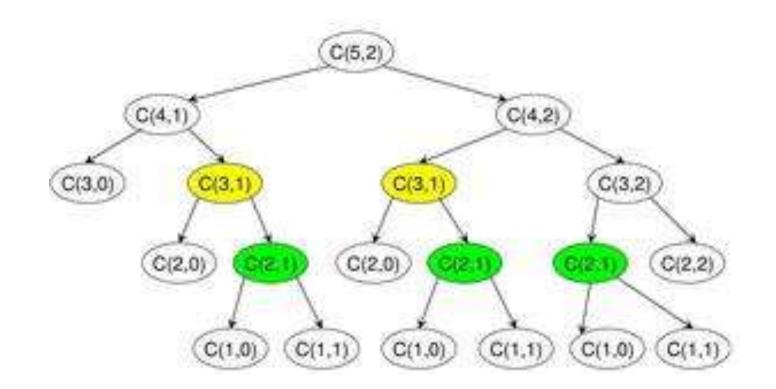
Divide and conquer	Dynamic Programming
Sub problems are not dependent on each other	Sub problems are dependent on each other
Doesn't store the solution of sub- problem	Stores the solution of sub problem

Computing a Binomial Coefficient

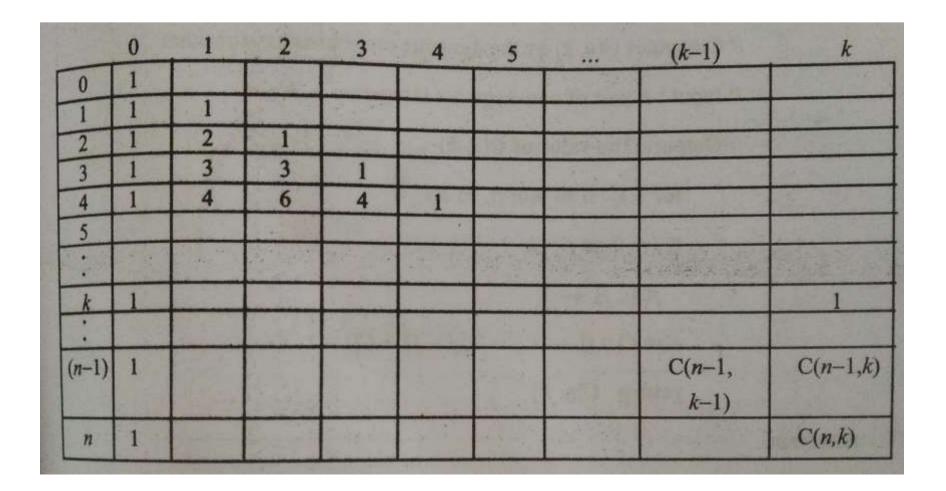
- Binomial coefficient computation of no of ways r items that can be chosen from n elements $C(_{r}^{n})$
- C(n, k) = n! / (n-k)! * k!
- C(n, k) = C(n-1, k-1) + C(n-1, k), n>k, k>0
- C (n,0) = 1, C (n,n) = 1
- <u>Example:</u>
- 1st formula : C (4,2) \rightarrow 4! /(2!) * 2! \rightarrow 24 / 4 \rightarrow 6
- 2nd formula : $C(4,2) \rightarrow C(3,1) + C(3,2) \rightarrow \dots \rightarrow 6$
- C (4,2) → how many two combinations of elements can be picked from set of 4 elements
- Example: possibilities of $1,2,3,4 \rightarrow (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)$

Computing a Binomial Coefficient

- Example : C (5,2)
- C(n, k) = C(n-1, k-1) + C(n-1, k), n>k, k>0
- C(n,0) = 1, C(n,n) = 1



Computing a Binomial Coefficient - Tabulation

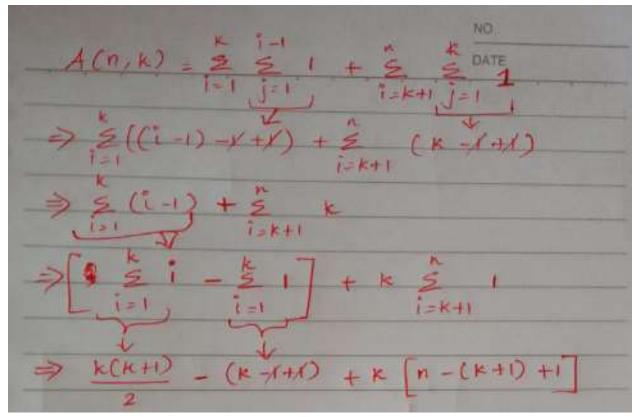


Computing a Binomial Coefficient - Algorithm

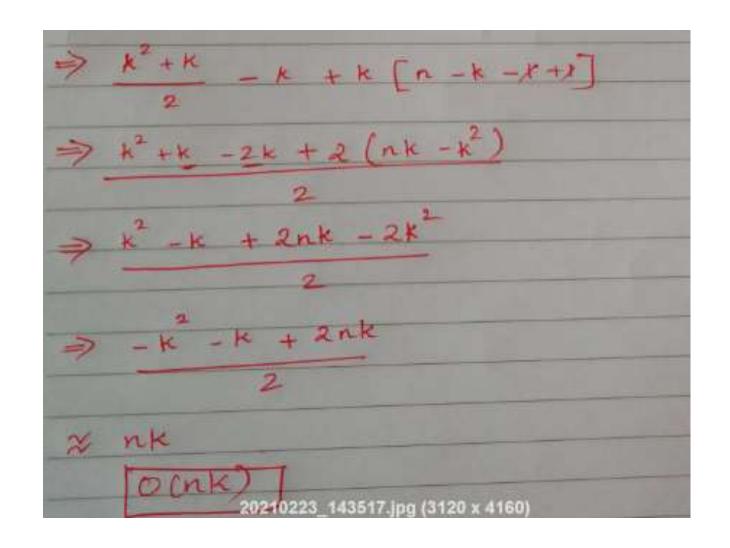
Algorithm Binomial(n, k)for $i \leftarrow 0$ to n do // fill out the table row wise for i = 0 to min(i, k) do if j==0 or j==i then $C[i, j] \leftarrow 1$ // IC else $C[i, j] \leftarrow C[i-1, j-1] + C[i-1, j]$ // recursive relation return C[n, k]

Computing a Binomial Coefficient - Analysis

- Cost of the algorithm table
- Sum 2 parts (upper and lower triangle)
- A(n, k) =sum for upper triangle + sum for the lower rectangle



Computing a Binomial Coefficient - Analysis



- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Pearson Education, 3rd Edition, 2012
- Ellis Horowitz, SartajSahni and SanguthevarRajasekaran,
 "Fundamentals of Computer Algorithms", Galgotia Publications, 2nd edition, 2003