

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35. An Autonomous Institution

Accredited by NBA-AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CST201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II PROCESS SCHEDULING AND SYNCHRONIZATION

Topic: CPU Scheduling – FCFS, SJF

Dr.A.Sumithra

Associate Professor

Department of Computer Science and Engineering

- □ Max CPU utilization
- □ Max throughput
- □ Min turnaround time
- □ Min waiting time
- □ Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time	
P_1	24	
P_2	3	
P_3	3	

□ Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- □ Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- □ Average waiting time: (0 + 24 + 27)/3 = 17

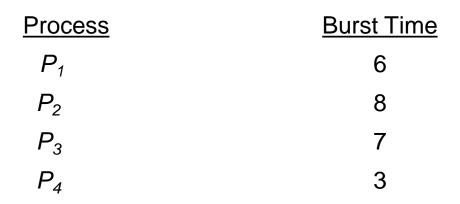
Suppose that the processes arrive in the order:

$$P_2, P_3, P_1$$

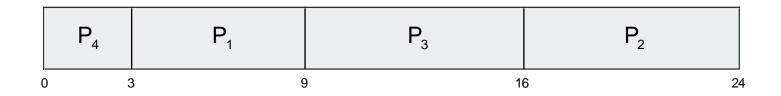
□ The Gantt chart for the schedule is:

	P ₂	P ₃	P ₁	
C	;	36	3	30

- □ Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - □ Consider one CPU-bound and many I/O-bound processes



- □ Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- SJF is optimal gives minimum average waiting time for a given set of processes
 - □ The difficulty is knowing the length of the next CPU request



Example of SJF

□ SJF scheduling chart

□ Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u>Arrival Time</u>	<u>Burst Time</u>
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Descriptive SJF Gantt Chart

	P ₁	P ₂	P ₄	P ₁	P ₃	
0		1 5	5 1	0 1	7 20	26

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

REFERENCES

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, "Operating System Concepts", Ninth Edition,
Wiley India Pvt Ltd, 2009.)
T2. Andrew S. Tanenbaum, "Modern Operating Systems", Fourth Edition, Pearson Education, 2010

REFERENCES:

- R1 Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.
- R2 Harvey M. Deitel, "Operating Systems", Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, "Operating Systems – Internals and Design Principles", 7th Edition, Prentice Hall, 2011