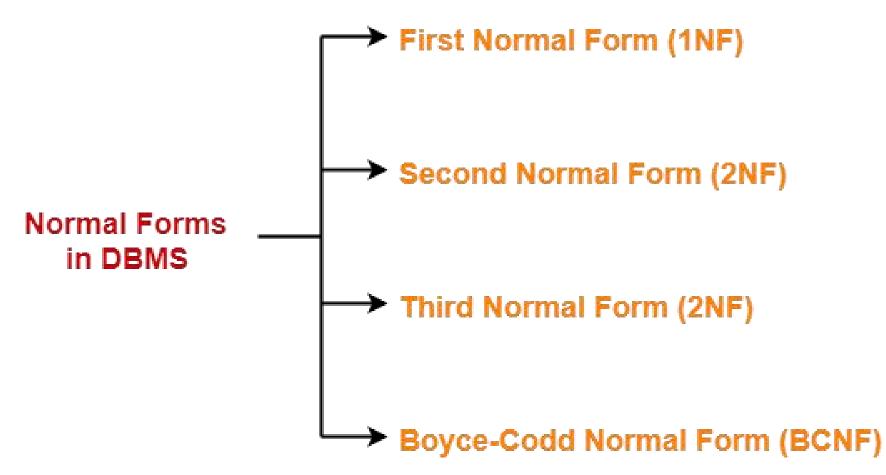
Unit III - Database Design

Dependencies and Normal forms - Functional Dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers-Non- loss decomposition-First, Second, Third Normal Forms, Dependency Preservation-Boyce/Codd Normal Form-Multivalued Dependencies and Fourth Normal Form- Join Dependencies and

Dependencies

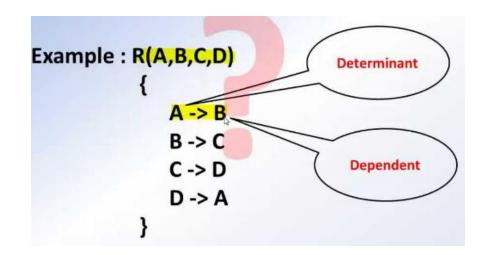
Dependencies in DBMS is a relation between two or more attributes.

It has the following types in DBMS


- Functional Dependency
- Fully-Functional Dependency
- Transitive Dependency
- Multivalued Dependency
- Partial Dependency

Normal Forms

- **Normalization** is the process of minimizing **redundancy** from a relation or set of relations.
- Redundancy in relation may cause insertion, deletion, and update anomalies.
- So, it helps to minimize the redundancy in relations.
- **Normal forms** are used to eliminate or reduce redundancy in database tables.



Functional Dependencies

- A functional dependency is a constraint that specifies the relationship between two sets of attributes
 - where one set can accurately determine the value of other sets.
- It is denoted as $X \rightarrow Y$,
- where X is a set of attributes that is capable of determining the value of Y.
- The attribute set on the left side of the arrow, X is called Determinant, while on the right side, Y is called the Dependent.

Example 1

Roll_no	name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CS	C2
4	В	60	EE	С3
5	С	80	IT	С3
6	d	80	EC	C2

Example 2

roll_no	name	dept_name	dept_building
42	abc	CO	A4
43	pqr	IT	A3
44	xyz	CO	A4
45	xyz	IT	A3
46	mno	EC	B2
47	jkl	ME	B2

Valid Functional Dependencies

- roll_no → { name, dept_name, dept_building },→ Here, roll_no can determine values of fields name, dept_name and dept_building, hence a valid Functional dependency
- roll_no → dept_name, Since, roll_no can determine whole set of {name, dept_name,
 dept_building}, it can determine its subset dept_name also.
- dept_name → dept_building, Dept_name can identify the dept_building accurately,
 since departments with different dept_name will also have a different dept_building
- More valid functional dependencies: roll_no → name, {roll_no, name} ---> {dept_name, dept_building}, etc.

invalid functional dependencies

- name → dept_name Students with the same name can have different dept_name, hence this is not a valid functional dependency.
- dept_building → dept_name There can be multiple departments in the same building,
 For example, in the above table departments ME and EC are in the same building B2,
 hence dept_building → dept_name is an invalid functional dependency.
- More invalid functional dependencies: name → roll_no, {name, dept_name} → roll_no, dept_building → roll_no, etc.

A.Aruna / AP / IT / SEM 4 / DBMS 4/18/2023

