e Cox

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

(AN AUTONOMOUS INSTITUTION)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST202-DATABASE MANAGEMENT SYSTEM

UNIT-III

Database Design

Topic: Minimal Covers

A minimal cover is a simplified and reduced version of the given set of functional dependencies.

Since it is a reduced version, it is also called as **Irreducible set**. It is also called as **Canonical Cover**.

Steps to Find Minimal Cover

1) Split the right-hand attributes of all FDs. Example A->XY => A->X, A->Y

2) Remove all redundant FDs. Example

 $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$ Here A->C is redundant since it can already be achieved using the Transitivity Property.

3) Find the Extraneous attribute and remove it. Example

 $AB \rightarrow C$, either A or B or none can be extraneous.

If A closure contains B then B is extraneous and it can be removed. If B closure contains A then A is extraneous and it can be removed.

Example 1

Minimize {A->C, AC->D, E->H, E->AD}

Step 1: {A->C, AC->D, E->H, E->A, E->D}

Step 2: {A->C, AC->D, E->H, E->A} Here Redundant FD : {E->D}

Step 3: $\{AC \rightarrow D\}$ $\{A\} + = \{A,C\}$ Therefore C is extraneous and is removed. $\{A \rightarrow D\}$

 $Minimal Cover = \{A \rightarrow C, A \rightarrow D, E \rightarrow H, E \rightarrow A\}$

Example 2 Minimize {AB->C, D->E, AB->E, E->C}

Step 1: {AB->C, D->E, AB->E, E->C}

Step 2: $\{D \rightarrow E, AB \rightarrow E, E \rightarrow C\}$ Here Redundant FD = $\{AB \rightarrow C\}$

Step 3: $\{AB \rightarrow E\}$ $\{A\} + = \{A\}$ $\{B\} + = \{B\}$ There is no extraneous attribute.

Therefore, Minimal cover = $\{D \rightarrow E, AB \rightarrow E, E \rightarrow C\}$