~» L.
I oS

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

COURSE NAME : 19CST101 PROGRAMMING FOR PROBLEM SOLVING
| YEAR/ | SEMESTER
UNIT-1V FUNCTIONS AND POINTERS

Topic: Pointers

Ms. Sumathi B
Assistant Professor
Department of Computer Science and Engineering




Pointer Arithmetic in C

SHTIronls

WWe can perform arithmetic operations on the pointers like addition, subtraction, etc. However, as we know that pointer contains the

address, the result of an arithmetic operation performed on the pointer will also be a pointer if the other operand is of type integer.

Following arithmetic operations are possible on the pointer in C

o Increment
o Decrement
o Addition

o Subtraction

o Comparison

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




N -~

Pointer Arithmetic in C

Incrementing Pointer in C

If we increment a pointer by 1, the pointer will start pointing to the immediate next location. This is somewhat different from the general

arithmetic since the value of the pointer will get increased by the size of the data type to which the pointer is pointing.

We can traverse an array by using the increment operation on a pointer which will keep pointing to every element of the array, perform

some operation on that, and update itself in a loop.

The Rule to increment the pointer is given below:

new_address= current_address + i * size_of(data type)

Where i is the number by which the pointer get increased.

For 32-bit int variable, it will be incremented by 2 bytes.

For 64-bit int variable, it will be incremented by 4 bytes.

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




Pointer Arithmetic in C

SHTIronls

Let's see the example of incrementing pointer variable on 64-bit architecture.

#include<stdio.h>

int main()<{

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+1;

printf("After increment: Address of p variable is %u \n",p); // in our case, p will get incremented by 4 bytes.

return 0;

¥ Output

Address of p variable i1s 3214864360
After increment: Address of p variable is 3214864304

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




[

Pointer Arithmetic in C O ! &

Traversing an array by using pointer

#include<stdio.h>

void main ()

7 Output
int arr[5] = {1, 2, 3, 4, 5};
int *p = arr; printing array elements...
inti; 1 2 2 4 5

printf("printing array elements...\n");
for(i = 0; i< 5; i++)
at

printf("%d ",*(p+i));

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




Pointer Arithmetic in C

Decrementing Pointer in C
Like increment, we can decrement a pointer variable, If we decrement a pointer, it will start pointing to the previous location. The formula
of decrementing the pointer is given below:
new_address= current_address - i * size_of(data type)

For 32-bit int variable, it will be decremented by 2 bytes.

For 64-bit int variable, it will be decremented by 4 bytes.

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




Pointer Arithmetic in C

Let's see the example of decrementing pointer variable on 64-bit OS.

SHTIronls

#include <stdio.h>

void main()<{

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-1;

printf("After decrement: Address of p variable is %u \n",p); // P will now point to the immidiate previous location.

by
Output

Address of p variable is 3214864300
After decrement: Address of p variable is 3214864296

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




[

Pointer Arithmetic in C O ! &

C Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is given below:
new_address= current_address + (number * size_of(data type))

32-bit

For 32-bit int variable, it will add 2 * number.

64-bit

For 64-bit int variable, it will add 4 * number.

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




Pointer Arithmetic in C

Let's see the example of adding value to pointer variable on 64-bit architecture.

SHTIronls

#include<stdio.h>
int main(){ Output
int number=50;
i _ _ Address of p variable i1s 3214864300
int *p;//pointer to int

After adding 3: Address of p variable 1s 3214864312
p=&number;//stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p+3; //adding 3 to pointer variable
printf("After adding 3: Address of p variable is %u \n",p);

return 0;

¥

As you can see, the address of p is 3214864300. But after adding 3 with p variable, it is 3214864312, i.e., 4*3=12 increment.

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




Pointer Arithmetic in C

C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. Subtracting any number from a pointer will give an address. The

formula of subtracting value from the pointer variable is given below:
new_address= current_address - (number * size_of(data type))

32-bit

For 32-bit int variable, it will subtract 2 * number.

64-bit

For 64-bit int variable, it will subtract 4 * number.

22/02/2021 Pointers / 19CST101-Programming for Problem Solving /Narmada C/CSE/SNSCT




Pointer Arithmetic in C

SHTIronls

Let's see the example of subtracting value from the pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){ Output

int number=50;

int *p;//pointer to int Address of p variable is 3214864300

p=&number;//stores the address of number variable After subtracting 3: Address of p variable is 3214864288
- r

printf("Address of p variable is %u \n",p);
p=p-3; //subtracting 3 from pointer variable
printf("After subtracting 3: Address of p variable is %u \n",p);

return 0;

¥

You can see after subtracting 3 from the pointer variable, it is 12 (4*3) less than the previous address value.

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




Pointers and Functions

In C programming, It s also possible to pass addresses as arguments to functions.

To accept these addresses in the function definition, we can use pointers, It's because

pointers are used to store addresses. Let's take an example:

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT



Example: Pass Addresses to Functions

- a_

»
STITUTIONIS

#include <stdio.h=>

vold swap(int *nl1, int *n2);

int main()

{
int numl = 5, num2 = 10:;
address of numl and num2 is passed
swap( &numl, &num2) ;
printf("numl = %d\n", numl);
printf("num2 = %d", num2);
return 0;
o
void swap(int* n1, int* n2) When you run the program, the output will be:
{
int temp;
temp = *n1: numl = 10
*n1 = *n2: num2 = 5
*n2 = temp;
o

Pointers / 19CST101-Programming for Problem Solving /Sumathi B/CSE/SNSCT




Tryronls




