Intel 8088

$>$ Introduced in 1979.
$>$ It was also 16 -bit μ P.
$>$ It was created as a cheaper version of Intel's 8086.
$>$ It was a 16-bit processor with an 8bit external bus.

Intel 80186 \& 80188

$>$ Introduced in 1982.
$>$ They were 16-bit $\mu \mathrm{Ps}$.
$>$ Clock speed was 6 MHz.
> 80188 was a cheaper version of 80186 with an 8 -bit external data bus.

Intel 80286

$>$ Introduced in 1982.
$>$ It was 16-bit μ P.
$>$ Its clock speed was 8 MHz .
$>$ Its data bus is 16 -bit and address bus is 24-bit.
$>$ It could address 16 MB of memory.

Inte才 '80fisined in 1986.
 $>$ It was first 32-bit μ P.

$>$ Its data bus is 32-bit and address bus is 32-bit.
$>$ It could address 4 GB of memory.
$>$ It had 2,75,000 transistors.
$>$ Its clock speed
varied from 16 MHz

Inted Patikeed in 1989.

$>$ It was also 32-bit μ P.
$>$ It had 1.2 million transistors.
$>$ Its clock speed varied from 16 MHz to 100 MHz depending upon the various versions.
$>8 \mathrm{~KB}$ of cache memory was

Intel Phentidured in 1993.

$>$ It was also 32-bit $\mu \mathrm{P}$.
$>$ It was originally named 80586.
$>$ Its clock speed was 66 MHz .
$>$ Its data bus is 32-bit and address bus is 32-bit.

Intel Pentium Pro

$>$ Introduced in 1995.
$>$ It was also 32-bit $\mu \mathrm{P}$.
$>$ It had 21 million transistors.
$>$ Cache memory:
$>8 \mathrm{~KB}$ for instructions.
$>8 \mathrm{~KB}$ for data.

Intel Pentium II

$>$ Introduced in 1997.
$>$ It was also 32-bit $\mu \mathrm{P}$.

$>$ Its clock speed was 233 MHz to 500 MHz.
$>$ Could execute 333 million instructions per second.

Intel Pentium II Xeon

$>$ Introduced in 1998.

$>$ It was also 32-bit $\mu \mathrm{P}$.
$>$ It was designed for servers.
$>$ Its clock speed was 400 MHz to 450 MHz.

Intel Pentium III

$>$ Introduced in 1999.
\Rightarrow It was also 32-bit μ P.
$>$ Its clock speed varied from 500 MHz to 1.4 GHz .
> It had 9.5 million transistors.

Intel Pentium IV

$>$ Introduced in 2000.
\Rightarrow It was also 32-bit μ P.
$>$ Its clock speed was
from 1.3 GHz to 3.8
GHz.
$>$ It had 42 million transistors.

Intel Dumathere in 2006.

\Rightarrow It is 32 -bit or 64 -bit $\mu \mathrm{P}$.

Dual CPU Core Chip

64~bit Microprocessors

Intel Core 2

Intel Core i3

Intel Core i5

Intel Core 17

Basic Terms

- Bit: A digit of the binary number $\{0$ or 1 \}
- Nibble: 4 bit Byte: 8 bit word: 16 bit
- Double word: 32 bit
- Data: binary number/code operated by an instruction
- Address: Identification number for memory locations
- Clock: square wave used to synchronize various devices in $\mu \mathrm{P}$
- Memory Capacity = 2^n , $n->n o$. of address lines

BUS CONCEPT

- BUS: Group of conducting lines that carries data , address \& control signals.
CLASSIFICATION OF BUSES:
1.DATA BUS: group of conducting lines that carries data.

2. ADDRESS BUS: group of conducting lines that carries address.
3.CONTROL BUS: group of conducting lines that carries control signals \{RD, WR etc\}
CPU BUS: group of conducting lines that directly connected to $\mu \mathrm{P}$
SYSTEM BUS: group of conducting lines that carries data, address \& control signals in a $\mu \mathrm{P}$ system

TRISTATE LOGIC

3 logic levels are:

- High State (logic 1)
- Low state (logic 0)
- High Impedance state

High Impedance: output is not being driven to any defined logic level by the output circuit.

INPUT		OUTPUT
A	B	C
0		0
1		1
\times	0	Z(high impedance)

Basic Microprocessors System

Central Processing Unit

