Intel 8088

- ➤ Introduced in 1979.
- \triangleright It was also 16-bit μ P.
- It was created as a cheaper version of Intel's 8086.
- It was a 16-bit processor with an 8-bit external bus.

Intel 80186 & 80188

- ➤ Introduced in 1982.
- > They were 16-bit μPs.
- Clock speed was 6 MHz.
- ➤ 80188 was a cheaper version of 80186 with an 8-bit external data bus.

Intel 80286

- ➤ Introduced in 1982.
- \triangleright It was 16-bit μ P.
- > Its clock speed was 8 MHz.
- ➤ Its data bus is 16-bit and address bus is 24-bit.
- ➤ It could address 16 MB of memory.

Intel 80386 in 1986.

- \triangleright It was first 32-bit μ P.
- ➤ Its data bus is 32-bit and address bus is 32-bit.
- ➤ It could address 4 GB of memory.
- ➤ It had 2,75,000 transistors.
- ➤ Its clock speed varied from 16 MHz

Intel 80486ed in 1989.

- \triangleright It was also 32-bit μ P.
- ➤ It had 1.2 million transistors.
- ➤ Its clock speed
 varied from 16 MHz
 to 100 MHz
 depending upon the
 various versions.
- ➤ 8 KB of cache memory was

Intel Pantium in 1993.

- \triangleright It was also 32-bit μ P.
- ➤ It was originally named 80586.
- ➤ Its clock speed was 66 MHz.
- ➤ Its data bus is 32-bit and address bus is 32-bit.

Intel Pentium Pro

- ➤ Introduced in 1995.
- \triangleright It was also 32-bit μ P.
- ➤ It had 21 million transistors.
- ➤ Cache memory:
 - >8 KB for instructions.
 - ▶8 KB for data.

Intel Pentium II

- ➤ Introduced in 1997.
- \triangleright It was also 32-bit μ P.
- ➤ Its clock speed was 233 MHz to 500 MHz.
- Could execute 333 million instructions per second.

Intel Pentium II Xeon

- ➤ Introduced in 1998.
- \triangleright It was also 32-bit μ P.
- ➤ It was designed for servers.
- ➤ Its clock speed was 400 MHz to 450 MHz.

Intel Pentium III

- ➤ Introduced in 1999.
- \triangleright It was also 32-bit μ P.
- ➤ Its clock speed varied from 500 MHz to 1.4 GHz.
- ➤ It had 9.5 million transistors.

Intel Pentium IV

- ➤ Introduced in 2000.
- \triangleright It was also 32-bit μ P.
- ➤ Its clock speed was from 1.3 GHz to 3.8 GHz.
- ➤ It had 42 million transistors.

Intel Duab Gage in 2006.

> It is 32-bit or 64-bit μ P.

Dual CPU Core Chip

64-bit Microprocessors

Intel Core 2

Intel Core i3

Intel Core i5

INTEL CORE 17

Basic Terms

- Bit: A digit of the binary number { 0 or 1 }
- Nibble: 4 bit Byte: 8 bit word: 16 bit
- Double word: 32 bit
- Data: binary number/code operated by an instruction
- Address: Identification number for memory locations
- Clock: square wave used to synchronize various devices in μP
- Memory Capacity = 2ⁿ,
 n->no. of address lines

Falling edge

BUS CONCEPT

 BUS: Group of conducting lines that carries data, address & control signals.

CLASSIFICATION OF BUSES:

- **1.DATA BUS:** group of conducting lines that carries data.
- 2. ADDRESS BUS: group of conducting lines that carries address.
- **3.CONTROL BUS:** group of conducting lines that carries control signals {RD, WR etc}
- CPU BUS: group of conducting lines that directly connected to μP
- SYSTEM BUS: group of conducting lines that carries data, address & control signals in a μP system

TRISTATE LOGIC

3 logic levels are:

- High State (logic 1)
- Low state (logic 0)
- High Impedance state

High Impedance: output is not being driven to any **defined** logic level by the output circuit.

INPUT		OUTPUT
Α	В	С
0	1	0
1		1
х	0	Z(high impedance)

Basic Microprocessors System

