
1

DECENDING ORDER

Note: change the coding JNB L1 into JB L1 in the LINE 10
2

LARGEST, smallest NUMBER IN AN
ARRAY

3

LARGEST NUMBER

4

SMALLEST NUMBER

5

Modular
Programming

6

• Generally , industry-programming projects consist
of thousands of lines of instructions or operation
code.

• The size of the modules are reduced to a humanly
comprehensible and manageable level.

• Program is composed from several smaller
modules. Modules could be developed by
separate teams concurrently.OBJ modules
(Object modules).

• The .OBJ modules so produced are combined
using a LINK program.

• Modular programming techniques simplify the
software development process

7

CHARACTERISTICS of module:

1. Each module is independent of other modules.

2. Each module has one input and one output.

3. A module is small in size.

4. Programming a single function per module is a goal

Advantages of Modular Programming:

• It is easy to write, test and debug a module.

• Code can be reused.

• The programmer can divide tasks.

• Re-usable Modules can be re-used within a program

DRAWBACKS:

Modular programming requires extra time and memory

8

MODULAR PROGRAMMING:
1.LINKING & RELOCATION
2.STACKS
3.Procedures
4.Interrupts & Interrupt Routines
5.Macros

9

LINKING &
RELOCATION

10

LINKER
• A linker is a program used to join together several

object files into one large object file.
• The linker produces a link file which contains the

binary codes for all the combined modules.

The linker program is invoked using the following
options.
C> LINK

or
C>LINK MS.OBJ

11

• The loader is a part of the operating system
and places codes into the memory after
reading the ‘.exe’ file

• A program called locator reallocates the
linked file and creates a file for permanent
location of codes in a standard format.

12

Creation and execution of a program

13

Loader
->Loader is a utility program which takes object code as

input prepares it for execution and loads the
executable code into the memory .

->Loader is actually responsible for initializing the
process of execution.

Functions of loaders:
1.It allocates the space for program in the memory(Allocation)

2.It resolves the code between the object modules(Linking)

3. some address dependent locations in the program, address constants
must be adjusted according to allocated space(Relocation)

4. It also places all the machine instructions and data of corresponding
programs and subroutines into the memory .(Loading)

14

Relocating loader (BSS Loader)

• When a single subroutine is changed then all
the subroutine needs to be reassembled.

• The binary symbolic subroutine (BSS) loader
used in IBM 7094 machine is relocating loader.

• In BSS loader there are many procedure
segments

• The assembler reads one sourced program
and assembles each procedure segment
independently

15

• The output of the relocating loader is the object program

• The assembler takes the source program as input; this source
program may call some external routines.

SEGMENT COMBINATION:

ASM-86 assembler regulating the way segments with the
same name are concatenated & sometimes they are overlaid.

Form of segment directive:

Segment name SEGEMENT Combine-type

Possible combine-type are:

• PUBLIC

• COMMON

• STACK

• AT

• MEMORY

16

Procedures

17

CALL & RET instruction

• Procedure is a part of code that can be called from
your program in order to make some specific task.
Procedures make program more structural and
easier to understand.

• syntax for procedure declaration:

name PROC
…………. ; here goes the code
…………. ; of the procedure ...

RET

name ENDP

here PROC is the procedure name.(used in top & bottom)

RET - used to return from OS. CALL-call a procedure
PROC & ENDP – complier directives

CALL & RET - instructions
18

EXAMPLE 1 (call a procedure)
ORG 100h

CALL m1

MOV AX, 2

RET ; return to operating system.

m1 PROC

MOV BX, 5

RET ; return to caller.

m1 ENDP

END

• The above example calls procedure m1, does MOV BX, 5 &
returns to the next instruction after CALL: MOV AX, 2.

19Presented by C.GOKUL,AP/EEE , Velalar College of Engg & Tech, Erode

Example 2 : several ways to pass
parameters to procedure

ORG 100h

MOV AL, 1

MOV BL, 2

CALL m2

CALL m2

CALL m2

CALL m2

RET ; return to operating system.

m2 PROC

MUL BL ; AX = AL * BL.

RET ; return to caller.

m2 ENDP

END
value of AL register is update every time the
procedure is called.
final result in AX register is 16 (or 10h)

21

PUSH & POP instruction

• Stack is an area of memory for keeping
temporary data.

• STACK is used by CALL & RET instructions.

PUSH -stores 16 bit value in the stack.

POP -gets 16 bit value from the stack.
• PUSH and POP instruction are especially useful

because we don't have too much registers to operate

1. Store original value of the register in stack (using
PUSH).

2. Use the register for any purpose.

3. Restore the original value of the register from stack
(using POP).

22

Example-1 (store value in STACK using
PUSH & POP)

ORG 100h

MOV AX, 1234h

PUSH AX ; store value of AX in stack.

MOV AX, 5678h ; modify the AX value.

POP AX ; restore the original value of AX.

RET

END

23

Example 2: use of the stack is for
exchanging the values

ORG 100h
MOV AX, 1212h ; store 1212h in AX.
MOV BX, 3434h ; store 3434h in BX
PUSH AX ; store value of AX in stack.
PUSH BX ; store value of BX in stack.
POP AX ; set AX to original value of BX.
POP BX ; set BX to original value of AX.
RET
END

push 1212h and then 3434h, on pop we will
first get 3434h and only after it 1212h 24

MACROS

25

How to pass parameters using macros-6/8 Mark

• Macros are just like procedures, but not really.

• Macros exist only until your code is compiled

• After compilation all macros are replaced with
real instructions

• several macros to make coding easier(Reduce
large & complex programs)

Example (Macro definition)

name MACRO [parameters,...]

<instructions>

ENDM

26

Example1 : Macro Definitions

SAVE MACRO definition of MACRO name SAVE

PUSH AX
PUSH BX
PUSH CX
ENDM

RETREIVE MACRO Another definition of MACRO name RETREIVE

POP CX
POP BX
POP AX
ENDM

27

28

MACROS with Parameters

Example:

COPY MACRO x, y ; macro named COPY with

2 parameters{x, y}

PUSH AX

MOV AX, x

MOV y, AX

POP AX

ENDM

29

