Assembler
Directives

» ASSUME
> DB
> DD
> DQ
> DT

» DW

> END

> ENDP
> ENDS
> EQU

> EVEN
> GROUP
> ORG

Directives Expansion

Defined
Defined

» PROC - Procedure
| Byte. » PTR - Pointer
Double Word

Definec

| Quad Word

Define Ten Bytes
Define Word

End Program

End Procedure

End Segment

Equate

Align on Even Memory Address
Group Related Segments
Originate ’

e ASSUME Directive - The ASSUME directive is

used to tell the assembler that the name of
the logical segment should be used for a
specified segment.

e DB(define byte) - DB directive is used to
declare a byte type variable or to store a byte
in memory location.

 DW(define word) - The DW directive is used
to define a variable of type word or to reserve
storage location of type word in memory.

Presented by C.GOKUL,AP/EEE , Velalar College of Engg & Tech, Erode

 DD(define double word) :This directive is used
to declare a variable of type double word or
restore memory locations which can be
accessed as type double word.

 DQ (define quadword) :This directive is used
to tell the assembler to declare a variable 4
words in length or to reserve 4 words of
storage in memory .

* DT (define ten bytes):lt is used to inform the
assembler to define a variable which is 10
bytes in length or to reserve 10 bytes of
storage in memory.

END- End program .This directive indicates the
assembler that this is the end of the program
module. The assembler ignores any
statements after an END directive.

ENDP- End procedure: It indicates the end of
the procedure (subroutine) to the assembler.

ENDS-End Segment: This directive is used with
the name of the segment to indicate the end
of that logical segment.

EQU - This EQU directive is used to give a
name to some value or to a symbol.

* PROC - The PROC directive is used to identify
the start of a procedure.

* PTR -This PTR operator is used to assign a
specific type of a variable or to a label.

* ORG -Originate : The ORG statement
changes the starting offset address of the
data.

Directives examples

ASSUME CS:CODE c¢s=> code segment
ORG 3000

NAME DB ‘THOMAS’

POINTER DD 12341234+

FACTOR EQU 03«

Assembly Language
Programming(ALP)
8086

Program 1: Increment an 8-bit number

* MOV AL, O5H Move 8-bit data to AL.
* INCAL Increment AL.

After Execution AL = 06+

Program 2: Increment an 16-bit number

e MOV AX, 0005H Move 16-bit data to AX.
e INC AX Increment AX.

After Execution AX = 0006+

Presented by C.GOKUL,AP/EEE , Velalar College of Engg & Tech, Erode

Program 3: Decrement an 8-bit number

* MOV AL, O5H Move 8-bit data to AL.
 DECAL Decrement AL.

After Execution AL = 04+

Program 4: Decrement an 16-bit number

e MOV AX, 0005H Move 16-bit data to AX.
e DEC AX Decrement AX.

After Execution AX = 0004+

10

Program 5: 1’'s complement of an 8-bit number.

* MOV AL, O5H Move 8-bit data to AL.
* NOTAL Complement AL.

After Execution AL = FAH

Program 6: 1’'s complement of a 16-bit
number.

e MOV AX, 0005H Move 16-bit data to AX.
* NOT AX Complement AX.

After Execution AX = FFFAH

11

Program 7: 2’s complement of an 8-bit number.

* MOV AL, O5H

NOT AL
INC AL

Complement AL.
Increment AL

After Execution AX=FAu+1 =FB

Program 8: 2’s complement of a 16-bit

MOV AX, O005H

NOT AX
INC AX

number.

Move 16-bit data to AX.
Complement AX.
Increment AX

After Execution AX=FFFAx +1 = FFFB

Move 8-bit data to AL.

12

Program 9: Add two 8-bit numbers

MOV AL, O5H Move 1« 8-bit number to AL.
MOV BL, O3H Move 2 8-bit number to BL.
ADD AL, BL Add BL with AL.

After Execution AL = 08+

Program 10: Add two 16-bit numbers

MOV AX, 0005H Move 1« 16-bit number to AX.
MOV BX, 0003+ Move 2 16-bit number to BX.
ADD AX, BX Add BX with AX.

After Execution AX = 0008H

13

Program 11: subtract two 8-bit numbers

MOV AL, O5H Move 1+ 8-bit number to AL.
MOV BL, O3H Move 2 8-bit number to BL.
SUB AL, BL subtract BL from AL.

After Execution AL = 02u

Program 12: subtract two 16-bit numbers

MOV AX, 0005H Move 1« 16-bit number to AX.
MOV BX, 0003H Move 2 16-bit number to BX.
SUB AX, BX subtract BX from AX.

After Execution AX =0002x

14

Program 13: Multiply two 8-bit unsigned

numbers.
MOV AL, 04+ Move 15t 8-bit number to AL.
MOV BL, 02+ Move 2" 8-bit number to BL.
MUL BL Multiply BL with AL and the result will
be in AX.

Program 14: Multiply two 8-bit signed

numbers.
MOV AL, 04+ Move 1t 8-bit number to AL.
MOV BL, 02+ Move 2" 8-bit number to BL.
IMUL BL Multiply BL with AL and the result will

be in AX.

15

Program 15: Multiply two 16-bit unsigned

numbers.
MOV AX, 0004+ Move 15t 16-bit number to AL.
MOV BX, 0002+ Move 2" 16-bit number to BL.
MUL BX Multiply BX with AX and the result will

be in DX:AX {4*2=0008=> 08=> AX , 00=> DX}

Program 16: Divide two 16-bit unsigned

numbers.
MOV AX, 0004+ Move 1t 16-bit number to AL.
MOV BX, 0002+ Move 2" 16-bit number to BL.
DIV BX Divide BX from AX and the result will be in AX & DX

{4/2=0002=> 02=> AX ,00=>DX}
(ie: Quotient => AX , Reminder => DX)

Presented by C.GOKUL,AP/EEE , Velalar College of Engg & Tech, Erode 16

Detailed coding
16 BIT ADDITION

PROGRAM

COMMENTS

MOV CX, 0000H

Initialize counter CX

MOV AX,[1200]

Get the first data in AX reg

MOV BX, [1202]

Get the second data in BX reg

ADD AX,BX Add the contents of both the regs AX & BX
JNCLI Check for carry
INC CX If carry exists, increment the CX

L1 : MOV [1206],CX

Store the carry

MOV [1204], AX

Store the sum

HLT

Stop the program

17

Detailed coding
16 BIT SUBTRACTION

PROGRAM COMMENTS
MOV CX, 0000H Initialize counter CX
MOV AX,[1200] Get the first data in AX reg
MOV BX, [1202] Get the second data in BX reg
SUB AX,BX Subtract the contents of BX from AX
JNCLI1 Check for borrow
INC CX If borrow exists, increment the CX
L1: MOV [1206],CX Store the borrow
MOV [1204], AX Store the difference
HLT Stop the program

18

16 BIT MULTIPLICATION

PROGRAM COMMENTS
MOV AX,[1200] Get the first data
MOV BX, [1202] Get the second data
MUL BX Multiply both
MOV [1206],AX Store the lower order product
MOV AX,DX Copy the higher order product to AX
MOV [1208],AX Store the higher order product
HLT Stop the program

19

16 BIT DIVISION

PROGRAM COMMENTS
MOV AX,[1200] Get the first data
MOV DX, [1202] Get the second data

MOV BX, [1204]

Divide the dividend by divisor

DIV BX Store the lower order product

MOV [1206],AX Copy the higher order product to AX
MOV AX,DX Store the higher order product

MOV [1208],AX Stop the program

HLT Get the first data

20

L1:

SUM of N numbers

MOV AX,0000
MOV SI,1100
MOV DI,1200
MOV CX,0005
MOV DX,0000
ADD AX,[SI]
INC S!

INC DX

CMP CX,DX
INZ L1

MOV [1200],AX
HLT

5 NUMBERS TO BE TAKEN SUM

21

L1:

Average of N numbers

MOV AX,0000

MOV S1,1100

MOV DI,1200

MOV CX,0005 5 NUMBERS TO BE TAKEN AVERAGE
MOV DX,0000

ADD AX,[SI]

INC SI

INC DX

CMP CX,DX

JNZ L1

DIV CX AX=AX/5(AVERAGE OF 5 NUMBERS)
MOV [1200],AX

H LT Presented by C.GOKUL,AP/EEE , Velalar College of Engg & TechyErode

L1:

FACTORIAL of N

MOV CX,0005
MOV DX,0000
MOV AX,0001
MUL CX

DEC DX

CMP CX,DX
JNZ L1

MOV [1200],AX
HLT

5 Factorial=5*4*3*2*1=120

ASCENDING ORDER

SORTING IN ASCENDING ORDER:

Load the array count in two registers C, and C,.

Get the first two numbers.

Compare the numbers and exchange if necessary so that the two numbers are in ascending

order.
Decrement C,.
Get the third number from the array and repeat the process until Csis 0.

Decrement C, and repeat the process until C; s 0.

24

