
 SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Coimbatore – 641035

B.E / B. Tech – Internal Assessment Exam – III

Academic Year 2022 – 2023 (ODD)

FIRST SEMESTER (REGULATION R2019)

19CST101 – PROGRAMMING FOR PROBLEM SOLVING

ANSWER KEY

PART A

1. Define Function. Differentiate between calling function and called function.

Function:

A function is a block of code which only runs when it is called. Functions are used to

perform certain actions, and they are important for reusing code: Define the code once, and

use it many times.

Calling function: A function that calls or invokes another function is called Calling function.

Called function: A function that is called or invoked by another function is called Called-

function.

2. Build a working code for the implementation of recursive function.

#include<stdio.h>

int sum(int k);

int main() {

 int result = sum(10);

 printf("%d", result);

 return 0;

}

int sum(int k) {

 if (k > 0) {

 return k + sum(k - 1);

 } else {

 return 0; } }

3. Illustrate pointer and justify why pointer is a more efficient data type.

Pointers in C are used to store the address of variables or a memory location. This variable

can be of any data type i.e, int, char, function, array, or any other pointer.

B

A pointer is a variable whose value is the address of another variable of the same type. The

variable's value that the pointer points to is accessed by dereferencing using the * operator

data_type * pointer_variable_name;

int x = 45;

int *ptr; //pointer variable declaration

ptr = &x;

Pointers are efficient because Pointers make possible to return more than one value from the

function. Pointers increase the processing speed. In other words, Execution time with pointers

is faster because data are manipulated with the address, that is, direct access to memory

location.

4. Define Structure and how a structure element can be accessed.

Structure in C is a User-Defined data type.

It is used to bind two or more similar or different data types or data structures together into a

single type.

The structure is created using the struct keyword, and a structure variable is created using the

struct keyword and the structure tag name.

Structure members are accessed using dot [.] operator.

5. Differentiate structure and union.

PART- B

6. (a). Illustrate and explain about the various Category Of Functions with example

codes.

A function is a block of statements that can perform a particular task. As we all know, there

is always at least one function in C, and that is main().

Example

In the example below, the function’s name is sum and the data type is int. This task of this

function is to produce the sum of two numbers:

int sum(int a,int b)

{

 return(a+b);

}

Below, the function is declared in main():

void main()

{

 int sum(int,int); //function declaration

 int x=5,y=6;

 total = sum(x,y);

}

Formal parameters and actual parameters

When we call a function in main() or anywhere else in the program, and the function we

created needs parameters, we would pass parameters to it while calling the function. In the

example above, we passed variables x and y to obtain the sum of x and y.

According to the example above, the formal parameters are a and b, and the actual

parameters are x and y.

Essentially, the variables being passed in the function call are actual parameters, and the

variables being initialized and used in the function are formal parameters.

Advantages of a function

1. A function can be used any number of times after it is defined once.

2. Functions make programs manageable and easy to understand.

Function categories

There are 4 types of functions:

1. Functions with arguments and return values

This function has arguments and returns a value:

Program code:

#include <stdio.h>

void main()

{

 int sub(int,int); //function with return value and arguments

 int x=10,y=7;

 int res = sub(x,y);

 printf("x-y = %d",res);

}

int sub(int a,int b) //function with return value and arguments

{

 return(a-b); // return value

}

Output:

x –y = 3

2. Functions with arguments and without return values

This function has arguments, but it does not return a value:

#include <stdio.h>

int main()

{

 void sum(float,float); //function with arguments and no return value

 float x=10.56,y=7.22;

 sum(x,y);

}

void sum(float a,float b) //function with arguments and no return value

{

 float z = a+b;

 printf("x + y = %f",z);

}

Output:

x + y = 17.780001

3. Functions without arguments and with return values

This function has no arguments, but it has a return value:

#include<stdio.h>

int main()

{

 int sum();

 int c = sum();

 printf("Sum = %d",c);

}

int sum() //function with no arguments and return data type

{

 int x=10,y=20,z=5;

 printf("x = %d ; y = %d ; z = %d \n",x,y,z);

 int sum = x+y+z;

 return(sum);

}

Output

x = 10 ; y = 20 ; z = 5 Sum = 35

4. Functions without arguments and without return values

This function has no arguments and no return value:

#include<stdio.h>

int main()

{

 void sum();

 sum();

}

void sum() //function with no arguments and return data type

{

 int x=15,y=35,z=5;

 printf("x = %d ; y = %d ; z = %d \n",x,y,z);

 int sum = x+y+z;

 printf("Sum = %d",sum);

}

Output:

x = 15 ; y = 35 ; z = 5 Sum = 55

(b) Construct a code for calculating the Factorial of a number using recursive function.

Recursion:

A recursive function is a function in code that refers to itself for execution. Recursive

functions can be simple or elaborate. They allow for more efficient code writing, for instance,

in the listing or compiling of sets of numbers, strings or other variables through a single

reiterated process.

Factorial:

In Mathematics, factorial is a simple thing. Factorials are just products. An exclamation mark

indicates the factorial. Factorial is a multiplication operation of natural numbers with all

the natural numbers that are less than it

Program Code:

#include<stdio.h>

#include<conio.h>

void main()

{

int n,i,f;

int recur(int);

printf(“\n FACTORIAL OF A NUMBER USING RECURSION”);

printf("Enter a number...");

scanf("%d",&n);

f=recur(n);

printf("Factorial is %d",f);

getch();

}

int recur(int x)

{

int fact;

if(x==1)

{

return(1);

}

else

{

fact=x*recur(x-1);

return(fact);

}

}

Output:

7. (a). Appraise and explain any four arithmetic operations on pointer with example for

each.

Pointers variables are also known as address data types because they are used to store the

address of another variable.

The address is the memory location that is assigned to the variable. It doesn’t store any value.

We can perform arithmetic operations on the pointers like addition, subtraction, etc.

However, as we know that pointer contains the address, the result of an arithmetic operation

performed on the pointer will also be a pointer if the other operand is of type integer.

Hence, there are only a few operations that are allowed to perform on Pointers in C language.

The operations are slightly different from the ones that we generally use for mathematical

calculations.

Increment/Decrement of a Pointer

Rule for Increment: new_address= current_address + i * size_of(data type)

Rule for Decrement: new_address= current_address - i * size_of(data type)

Example:

#include <stdio.h>

int main()

{

int a = 22;

int *p = &a;

printf("p = %u\n", p); // p = 6422288

p++;

printf("p++ = %u\n", p); //p++ = 6422292 +4 // 4 bytes

p--;

printf("p-- = %u\n", p); //p-- = 6422288 -4 // restored to original value

float b = 22.22;

float *q = &b;

printf("q = %u\n", q); //q = 6422284

q++;

printf("q++ = %u\n", q); //q++ = 6422288 +4 // 4 bytes

q--;

printf("q-- = %u\n", q); //q-- = 6422284 -4 // restored to original value

char c = 'a';

char *r = &c;

printf("r = %u\n", r); //r = 6422283

r++;

printf("r++ = %u\n", r); //r++ = 6422284 +1 // 1 byte

r--;

printf("r-- = %u\n", r); //r-- = 6422283 -1 // restored to original value

return 0;

}

Addition of integer to a pointer

Rule for Addition: new_address= current_address + (number * size_of(data type))

Example:

Subtraction of integer to a pointer

Rule for Subtraction: new_address= current_address - (number * size_of(data type))

Example:

Subtracting two pointers of the same type

Rule for Subtraction of two pointer of same type:

Address2 - Address1 = (Subtraction of two addresses)/size of data type which pointer points

Example:

Comparison of pointers of the same type

Rule for Comparing pointers: pointer 1 <comparison operator> pointer 2

Example:

(b) Generate a C code to swap 2 numbers entered by the user using call by reference

and call by value.

Call By value:

In call by value method, the value of the actual parameters is copied into the formal

parameters.

In other words, we can say that the value of the variable is used in the function call in the call

by value method.

In call by value method, we cannot modify the value of the actual parameter by the formal

parameter.

In call by value, different memory is allocated for actual and formal parameters since the

value of the actual parameter is copied into the formal parameter.

The actual parameter is the argument which is used in the function call whereas formal

parameter is the argument which is used in the function definition.

Example:

#include <stdio.h>

void swap(int x, int y)

{

int temp = x;

x = y;

y = temp;

}

int main()

{

int x = 10;

int y = 11;

printf("Values before swap: x = %d, y = %d\n", x,y);

swap(x,y);

printf("Values after swap: x = %d, y = %d", x,y);

}

Output

Call by Reference:

Calling a function by reference will give function parameter the address of original parameter

due to which they will point to same memory location and any changes made in the function

parameter will also reflect in original parameters.

In call by reference, the address of the variable is passed into the function call as the actual

parameter.

The value of the actual parameters can be modified by changing the formal parameters since

the address of the actual parameters is passed.

In call by reference, the memory allocation is similar for both formal parameters and actual

parameters. All the operations in the function are performed on the value stored at the address

of the actual parameters, and the modified value gets stored at the same address.

Example

#include <stdio.h>

void swap(int *x, int *y)

{

int temp = *x;

*x = *y;

*y = temp;

}

int main()

{

int x = 10; int y = 11;

printf("Values before swap: x = %d, y = %d\n", x,y);

swap(&x,&y);

printf("Values after swap: x = %d, y = %d", x,y);

}

Output

8. (a) A college conducts a semester exam and there are 6 subjects in that semester. Get

all the required details of student and display the progress card with percentage of

marks obtained in semester using Structures

#include <stdio.h>

struct Student

{

 char name[50];

 int rollno;

 float marks[6];

};

int main()

{

 struct Student s;

 // Get the details of the student

 printf("Enter the name of the student: ");

 fgets(s.name, 50, stdin);

 printf("Enter the roll number of the student: ");

 scanf("%d", &s.rollno);

 // Get the marks of the student in each subject

 printf("Enter the marks of the student in each subject:\n");

 for (int i = 0; i < 6; i++)

 {

 printf("Subject %d: ", i+1);

 scanf("%f", &s.marks[i]);

 }

 // Calculate the total marks and percentage

 float total = 0.0;

 for (int i = 0; i < 6; i++)

 {

 total += s.marks[i];

 }

 float percentage = total / 6;

 // Display the progress card

 printf("\nProgress Card\n");

 printf("Name: %s", s.name);

 printf("Roll Number: %d\n", s.rollno);

 printf("Marks:\n");

 for (int i = 0; i < 6; i++) {

 printf("Subject %d: %.2f\n", i+1, s.marks[i]);

 }

 printf("Total marks: %.2f\n", total);

 printf("Percentage: %.2f%%\n", percentage);

 return 0;

}

Output:

(b) Elaborate Union. Explain Union in detail with suitable program.

A union is a special data type available in C that allows to store different data types in the

same memory location. You can define a union with many members, but only one member

can contain a value at any given time. Unions provide an efficient way of using the same

memory location for multiple-purpose.

Defining a Union

To define a union, you must use the union statement in the same way as you did while

defining a structure. The union statement defines a new data type with more than one member

for your program. The format of the union statement is as follows −

union [union tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such as

int i; or float f; or any other valid variable definition. At the end of the union's definition,

before the final semicolon, you can specify one or more union variables but it is optional.

Here is the way you would define a union type named Data having three members i, f, and str

−

union Data {

 int i;

 float f;

 char str[20];

} data;

Now, a variable of Data type can store an integer, a floating-point number, or a string of

characters. It means a single variable, i.e., same memory location, can be used to store

multiple types of data. You can use any built-in or user defined data types inside a union

based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the

union. For example, in the above example, Data type will occupy 20 bytes of memory space

because this is the maximum space which can be occupied by a character string.

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member

access operator is coded as a period between the union variable name and the union member

that we wish to access. You would use the keyword union to define variables of union type.

Example:

#include<stdio.h>

#include<conio.h>

#include<math.h>

typedef union

{

float aa;

int bb;

} nvals;

typedef struct

{

float x;

char flag;

nvals exp;

}values;

void main()

{

values a;

int i;

float n,y;

clrscr();

printf("enter the value for x(ie,x power n)");

scanf("%f",&a.x);

printf("enter the value for n(ie,x power n)");

scanf("%f",&n);

i=(int)n;

a.flag=(i==n)?'i':'f';

if(a.flag=='i')

a.exp.bb=i;

else

a.exp.aa=n;

if(a.flag=='f'&&a.x<=0.0)

{

printf("can't rise a non positive number to a");

printf("\n floating point power");

}

else

{

y=pow(a.x,n);

printf("\ny=%.4f",y);

}

getch();

}

OUTPUT:

