
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

PROGRAMMING FOR PROBLEM SOLVING

I YEAR - I SEM

UNIT III – ARRAYS AND STRINGS

TOPIC – C STRINGS – STRING OPERATIONS

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

STRINGS - INTRODUCTION

Strings in C are robust data structures for storing information. They can be implemented with

either a one-dimensional array of characters or pointers. There are many ways to initialize a

string in C. These strings can be used to read lines of text and can also be passed to functions.

Strings are an array of characters that terminate with a null character '\0'. The difference

between a character array and a string is that, unlike the character array, the string ends with a

null character. There are various built-in string functions in the C programming language.

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

WHAT IS A STRING?

A string is a collection of characters (i.e., letters, numerals, symbols, and punctuation marks)

in a linear sequence. In C, a string is a sequence of characters concluded with a NULL

character '\0'.

For example: char str[] = “C program.\0";

Like many other programming languages, strings in C are enclosed within double quotes(" "),

whereas characters are enclosed within single quotes(' '). When the compiler finds a sequence

of characters enclosed within the double quotation marks, it adds a null character (\0) at the

end by default.

Thus, this is how the string is stored:

C p r o g r a m . \0

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

DECLARATION OF STRING IN C

A String in C is an array with character as a data type. C does not directly support string as

a data type, as seen in other programming languages like C++. Hence, character arrays

must be used to display a string in C. The general syntax of declaring a string in C is as

follows:

char variable[array_size];

Thus, the classic declaration can be made as follows:

char str[5];

char str2[50];

It is vital to note that we should always account for an extra space used by the null

character(\0).

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

INITIALIZING A STRING

There are four methods of initializing a string in C:

1. Assigning a string literal with size

We can directly assign a string literal to a character array keeping in mind to keep the array size at least one more

than the length of the string literal that will be assigned to it.

Note While setting the initial size, we should always account for one extra space used by the null character. If we

want to store a string of size n, we should set the initial size to be n+1.

For example: char str[6] = “Hello";

The string length here is 5, but we have kept the size to be 6 to account for the Null character. The compiler adds the

Null character(\0) at the end automatically. If the array cannot accommodate the entire string, it only takes characters

based on its space.

For example:

char str[3] = "Scaler."; printf("%s",str);

Output: Sca

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

INITIALIZING A STRING

2. Assigning a string literal without size

It is also possible to directly assign a string literal to a character array without any size. The size gets determined

automatically by the compiler at compile time.

char str[] = “HELLO.";

The critical thing to remember is that the name of the string, here "str" acts as a pointer because it is an array.

3. Assigning character by character with size

We can also assign a string character by character. However, it is essential to set the end character as '\0'. For example:

char str[6] = {„H', „E', „L', „L', „O', '\0'};

4. Assigning character by character without size

Like assigning directly without size, we also assign character by character with the Null Character at the end. The

compiler will determine the size of the string automatically.

char str[] = {„H', „E', „L', „L', „O', '\0'};

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

ASSIGNING VALUE TO STRINGS

There are two methods to assign value to the strings.

1. Assign the value to a character array while initializing.

char str[6] = “Hello”;

2. We can use the strcpy() function to copy the value we want to assign to the character array. The

syntax for strcpy() is as follows:

strcpy(char* destination, const char* source);

It copies the string pointed by the source (including the null character) to the destination.

For example:

char str[20]; strcpy(str,"Strings.");

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

EXAMPLE

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

STRING OPERATIONS

We're often required to modify the strings and perform several operations on them

according to our needs. If we want to get the length of the string, we could run a loop and

calculate its length, but it is not the best way in case of complex problems. Hence, string

functions are used to make our code efficient and straightforward as they are pre-written so

we can use them directly.

The string handling functions are defined in the header file string.h. This header file must

be included in the C program to use the string handling functions.

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

STRING FUNCTIONS

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

EXAMPLE

#include <stdio.h>

#include <string.h>

int main() {

 char str1[50] = "hello";

 char str2[] = "world";

 char str3[100];

 // strlen()

 printf("Length of str1: %ld\n", strlen(str1));

 // strnlen()

 printf("Length of the first 3 characters of str1: %ld\n",

strnlen(str1, 3));

 // strcmp()

 printf("Comparing str1 and str2: %d\n", strcmp(str1, str2));

 // strncmp()

 printf("Comparing the first 3 characters of str1 and str2:

%d\n", strncmp(str1, str2, 3));

 // strcat()

 strcat(str1, str2);

 printf("Concatenating str2 to str1: %s\n", str1);

// strcpy()

 strcpy(str3, str1);

 printf("Copying str1 to str3: %s\n", str3);

 // strchr()

 printf("Finding the first occurrence of 'l' in str1: %s\n",

strchr(str1, 'l'));

 // strrchr()

 printf("Finding the last occurrence of 'l' in str1: %s\n",

strrchr(str1, 'l'));

 // strstr()

 printf("Finding the first occurrence of 'world' in str1: %s\n",

strstr(str1, "world"));

 // strcasecmp()

 printf("Comparing str1 and str2 case-insensitively: %d\n",

strcasecmp(str1, str2));

 //strrev()

 printf("reverse of str1 is : %s\n", strrev(str1));

 return 0;

}

Strings / 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

OUTPUT

