
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

PROGRAMMING FOR PROBLEM SOLVING

I YEAR - I SEM

UNIT III – ARRAYS AND STRINGS

TOPIC – 1D, 2D AND MULTI DIMENSIONAL ARRAYS

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

INTRODUCTION

Array is a data structure that is used to store variables that are of similar data types at

contiguous locations. The main advantage of the array is random access and cache

friendliness. There are mainly three types of the array:

 One Dimensional (1D) Array

 Two Dimension (2D) Array

 Multidimensional Array

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

ONE – DIMENSIONAL ARRAYS

A one-dimensional array is a type of array in which the elements are arranged in a single row.

Each element in the array can be accessed using a unique index or position in the array. Here

are some key points about one-dimensional arrays:

 One-dimensional arrays are also known as linear arrays or vectors.

 In most programming languages, the index of the first element in a one-dimensional array

is 0.

 The elements in a one-dimensional array can be of any data type, such as integers, floats,

characters, or strings.

 One-dimensional arrays are often used to store and manipulate lists of data, such as scores,

temperatures, or stock prices.

 The size of the array is fixed.

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

REPRESENTATION OF 1-D ARRAY

char alphabets[5] = {‘U’, ‘B’, ‘F’, ‘D’, ‘A’, ‘E’, ‘C’};

In this example, we create a one-dimensional array called alphabets that contains five

elements. The first element in the array is ‘U’, the second element is ‘B’, and so on. We can

access the elements of the array using their index. For example, alphabets[0] returns the

value ‘U’, alphabets[3] returns the value ‘D’, and so on.

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

EXAMPLE

// C Program to illustrate the use of 1D array

#include <stdio.h>

int main()

{

 int arr[5]; // 1d array declaration

 for (int i = 0; i < 5; i++) { // 1d array initialization using for loop

 arr[i] = i * i - 2 * i + 1;

 }

 printf("Elements of Array: ");

 for (int i = 0; i < 5; i++) { // printing 1d array by traversing using for loop

 printf("%d ", arr[i]);

 }

 return 0;

}

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

TWO DIMENSIONAL ARRAYS

A Two-Dimensional array or 2D array in C is an array that has exactly two dimensions. They

can be visualized in the form of rows and columns organized in a two-dimensional plane.

 It is a list of lists of the variable of the same data type.

 It also allows random access and all the elements can be accessed with the help of their

index.

 It can also be seen as a collection of 1D arrays.

 It is also known as the Matrix.

 Its dimension can be increased from 2 to 3 and 4 so on.

 They all are referred to as a multi-dimensional array.

 The most common multidimensional array is a 2D array.

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

REPRESENTATION OF 2D ARRAYS

array_name[size1] [size2];

Here,

size1: Size of the first dimension.

size2: Size of the second dimension.

 int arr[2][3] = { 10, 20, 30, 40, 50, 60 };

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

EXAMPLE

// C Program to illustrate 2d array

#include <stdio.h>

int main()

{

 int arr[2][3] = { 10, 20, 30, 40, 50, 60 }; // declaring and initializing 2d array

printf("2D Array:\n");

 for (int i = 0; i < 2; i++) { // printing 2d array

 for (int j = 0; j < 3; j++) {

 printf("%d ",arr[i][j]);

 }

 printf("\n");

 }

 return 0;

}

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

MULTI DIMENSIONAL ARRAYS

Another popular form of a multi-dimensional array is Three Dimensional Array or 3D Array. A 3D array

has exactly three dimensions. It can be visualized as a collection of 2D arrays stacked on top of each other

to create the third dimension.

array_name [size1] [size2] [size3];

int arr[2][2][2] = { 10, 20, 30, 40, 50, 60 };

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/ MCA

EXAMPLE

// C Program to illustrate the 3d array

#include <stdio.h>

int main()

{

 int arr[2][2][2] = { 10, 20, 30, 40, 50, 60 }; // 3D array declaration

 for (int i = 0; i < 2; i++) { // printing elements

 for (int j = 0; j < 2; j++) {

 for (int k = 0; k < 2; k++) {

 printf("%d ", arr[i][j][k]); }

 printf("\n"); }

 printf("\n \n"); }

 return 0;

}

1D &2D Arrays/ 19CST101 / Programming for Problem Solving / Priyanga S/ AP/

MCA

DIFFERENCE BETWEEN 1D AND 2D ARRAYS

Basis One Dimension Array Two Dimension Array

Definition Store a single list of the element of a similar data type. Store a ‘list of lists’ of the element of a similar data type.

Representation Represent multiple data items as a list.
Represent multiple data items as a table consisting of rows and

columns.

Declaration

The declaration varies for different programming

language:

1.For C++,

datatype variable_name[row]

2.For Java,

datatype [] variable_name= new datatype[row]

The declaration varies for different programming language:

1.For C++,

datatype variable_name[row][column]

2.For Java,

datatype [][] variable_name= new datatype[row][column]

Dimension One Two

Size(bytes)
size of(datatype of the variable of the array) * size of the

array

size of(datatype of the variable of the array)* the number of rows*

the number of columns.

Address calculation.
Address of a[index] is equal to (base Address+ Size of

each element of array * index).

Address of a[i][j] can be calculated in two ways row-major and

column-major

1.Column Major: Base Address + Size of each element (number

of rows(j-lower bound of the column)+(i-lower bound of the

rows))

2.Row Major: Base Address + Size of each element (number of

columns(i-lower bound of the row)+(j-lower bound of the

column))

