
Silberschatz, Galvin and Gagne 200210.1Operating System Concepts

Chapter 10: Virtual Memory

 Background

 Demand Paging

 Process Creation

 Page Replacement

 Allocation of Frames

 Thrashing

 Operating System Examples

Silberschatz, Galvin and Gagne 200210.2Operating System Concepts

Background

 Virtual memory – separation of user logical memory

from physical memory.

 Only part of the program needs to be in memory for

execution.

 Logical address space can therefore be much larger than

physical address space.

 Allows address spaces to be shared by several processes.

 Allows for more efficient process creation.

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

Silberschatz, Galvin and Gagne 200210.3Operating System Concepts

Virtual Memory That is Larger Than Physical Memory

Silberschatz, Galvin and Gagne 200210.4Operating System Concepts

Demand Paging

 Bring a page into memory only when it is needed.

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed reference to it

 invalid reference abort

 not-in-memory bring to memory

Silberschatz, Galvin and Gagne 200210.5Operating System Concepts

Transfer of a Paged Memory to Contiguous Disk Space

Silberschatz, Galvin and Gagne 200210.6Operating System Concepts

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is

associated

(1 in-memory, 0 not-in-memory)

 Initially valid–invalid but is set to 0 on all entries.

 Example of a page table snapshot.

 During address translation, if valid–invalid bit in page

table entry is 0 page fault.

1

1

1

1

0

0

0

Frame # valid-invalid bit

page table

Silberschatz, Galvin and Gagne 200210.7Operating System Concepts

Page Table When Some Pages Are Not in Main Memory

Silberschatz, Galvin and Gagne 200210.8Operating System Concepts

Page Fault

 If there is ever a reference to a page, first reference will

trap to

OS page fault

 OS looks at another table to decide:

 Invalid reference abort.

 Just not in memory.

 Get empty frame.

 Swap page into frame.

 Reset tables, validation bit = 1.

 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

Silberschatz, Galvin and Gagne 200210.9Operating System Concepts

Steps in Handling a Page Fault

Silberschatz, Galvin and Gagne 200210.10Operating System Concepts

What happens if there is no free frame?

 Page replacement – find some page in memory, but not

really in use, swap it out.

 algorithm

 performance – want an algorithm which will result in

minimum number of page faults.

 Same page may be brought into memory several times.

Silberschatz, Galvin and Gagne 200210.11Operating System Concepts

Performance of Demand Paging

 Page Fault Rate 0 p 1.0

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ [swap page out]

+ swap page in

+ restart overhead)

Silberschatz, Galvin and Gagne 200210.12Operating System Concepts

Demand Paging Example

 Memory access time = 1 microsecond

 50% of the time the page that is being replaced has been

modified and therefore needs to be swapped out.

 Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

Silberschatz, Galvin and Gagne 200210.13Operating System Concepts

Process Creation

 Virtual memory allows other benefits during process

creation:

- Copy-on-Write

- Memory-Mapped Files

Silberschatz, Galvin and Gagne 200210.14Operating System Concepts

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory.

If either process modifies a shared page, only then is the

page copied.

 COW allows more efficient process creation as only

modified pages are copied.

 Free pages are allocated from a pool of zeroed-out

pages.

Silberschatz, Galvin and Gagne 200210.15Operating System Concepts

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging. A page-sized portion

of the file is read from the file system into a physical page.

Subsequent reads/writes to/from the file are treated as ordinary

memory accesses.

 Simplifies file access by treating file I/O through memory rather

than read() write() system calls.

 Also allows several processes to map the same file allowing the

pages in memory to be shared.

Silberschatz, Galvin and Gagne 200210.16Operating System Concepts

Memory Mapped Files

Silberschatz, Galvin and Gagne 200210.17Operating System Concepts

Page Replacement

 Prevent over-allocation of memory by modifying page-

fault service routine to include page replacement.

 Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk.

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can

be provided on a smaller physical memory.

Silberschatz, Galvin and Gagne 200210.18Operating System Concepts

Need For Page Replacement

Silberschatz, Galvin and Gagne 200210.19Operating System Concepts

Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:

- If there is a free frame, use it.

- If there is no free frame, use a page replacement

algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame.

Update the page and frame tables.

4. Restart the process.

Silberschatz, Galvin and Gagne 200210.20Operating System Concepts

Page Replacement

Silberschatz, Galvin and Gagne 200210.21Operating System Concepts

Page Replacement Algorithms

 Want lowest page-fault rate.

 Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the

number of page faults on that string.

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Silberschatz, Galvin and Gagne 200210.22Operating System Concepts

Graph of Page Faults Versus The Number of Frames

Silberschatz, Galvin and Gagne 200210.23Operating System Concepts

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per

process)

 4 frames

 FIFO Replacement – Belady’s Anomaly

 more frames less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Silberschatz, Galvin and Gagne 200210.24Operating System Concepts

FIFO Page Replacement

Silberschatz, Galvin and Gagne 200210.25Operating System Concepts

FIFO Illustrating Belady’s Anamoly

Silberschatz, Galvin and Gagne 200210.26Operating System Concepts

Optimal Algorithm

 Replace page that will not be used for longest period of

time.

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

Silberschatz, Galvin and Gagne 200210.27Operating System Concepts

Optimal Page Replacement

Silberschatz, Galvin and Gagne 200210.28Operating System Concepts

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the

counter.

 When a page needs to be changed, look at the counters to

determine which are to change.

1

2

3

5

4

4 3

5

Silberschatz, Galvin and Gagne 200210.29Operating System Concepts

LRU Page Replacement

Silberschatz, Galvin and Gagne 200210.30Operating System Concepts

LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in

a double link form:

 Page referenced:

move it to the top

 requires 6 pointers to be changed

 No search for replacement

Silberschatz, Galvin and Gagne 200210.31Operating System Concepts

Use Of A Stack to Record The Most Recent Page References

Silberschatz, Galvin and Gagne 200210.32Operating System Concepts

LRU Approximation Algorithms

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1.

 Replace the one which is 0 (if one exists). We do not know

the order, however.

 Second chance

 Need reference bit.

 Clock replacement.

 If page to be replaced (in clock order) has reference bit = 1.

then:

 set reference bit 0.

 leave page in memory.

 replace next page (in clock order), subject to same

rules.

Silberschatz, Galvin and Gagne 200210.33Operating System Concepts

Second-Chance (clock) Page-Replacement Algorithm

Silberschatz, Galvin and Gagne 200210.34Operating System Concepts

Counting Algorithms

 Keep a counter of the number of references that have

been made to each page.

 LFU Algorithm: replaces page with smallest count.

 MFU Algorithm: based on the argument that the page

with the smallest count was probably just brought in and

has yet to be used.

Silberschatz, Galvin and Gagne 200210.35Operating System Concepts

Allocation of Frames

 Each process needs minimum number of pages.

 Example: IBM 370 – 6 pages to handle SS MOVE

instruction:

 instruction is 6 bytes, might span 2 pages.

 2 pages to handle from.

 2 pages to handle to.

 Two major allocation schemes.

 fixed allocation

 priority allocation

Silberschatz, Galvin and Gagne 200210.36Operating System Concepts

Fixed Allocation

 Equal allocation – e.g., if 100 frames and 5 processes,

give each 20 pages.

 Proportional allocation – Allocate according to the size of

process.

m
S

s
pa

m

sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

a

a

s

s

m

i

Silberschatz, Galvin and Gagne 200210.37Operating System Concepts

Priority Allocation

 Use a proportional allocation scheme using priorities

rather than size.

 If process Pi generates a page fault,

 select for replacement one of its frames.

 select for replacement a frame from a process with lower

priority number.

Silberschatz, Galvin and Gagne 200210.38Operating System Concepts

Global vs. Local Allocation

 Global replacement – process selects a replacement

frame from the set of all frames; one process can take a

frame from another.

 Local replacement – each process selects from only its

own set of allocated frames.

Silberschatz, Galvin and Gagne 200210.39Operating System Concepts

Thrashing

 If a process does not have “enough” pages, the page-

fault rate is very high. This leads to:

 low CPU utilization.

 operating system thinks that it needs to increase the degree

of multiprogramming.

 another process added to the system.

 Thrashing a process is busy swapping pages in and

out.

Silberschatz, Galvin and Gagne 200210.40Operating System Concepts

Thrashing

 Why does paging work?

Locality model

 Process migrates from one locality to another.

 Localities may overlap.

 Why does thrashing occur?

 size of locality > total memory size

Silberschatz, Galvin and Gagne 200210.41Operating System Concepts

Locality In A Memory-Reference Pattern

Silberschatz, Galvin and Gagne 200210.42Operating System Concepts

Working-Set Model

 working-set window a fixed number of page

references

Example: 10,000 instruction

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent

(varies in time)

 if too small will not encompass entire locality.

 if too large will encompass several localities.

 if = will encompass entire program.

 D = WSSi total demand frames

 if D > m Thrashing

 Policy if D > m, then suspend one of the processes.

Silberschatz, Galvin and Gagne 200210.43Operating System Concepts

Working-set model

Silberschatz, Galvin and Gagne 200210.44Operating System Concepts

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example: = 10,000

 Timer interrupts after every 5000 time units.

 Keep in memory 2 bits for each page.

 Whenever a timer interrupts copy and sets the values of all

reference bits to 0.

 If one of the bits in memory = 1 page in working set.

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time

units.

Silberschatz, Galvin and Gagne 200210.45Operating System Concepts

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate.

 If actual rate too low, process loses frame.

 If actual rate too high, process gains frame.

Silberschatz, Galvin and Gagne 200210.46Operating System Concepts

Other Considerations

 Prepaging

 Page size selection

 fragmentation

 table size

 I/O overhead

 locality

Silberschatz, Galvin and Gagne 200210.47Operating System Concepts

Other Considerations (Cont.)

 TLB Reach - The amount of memory accessible from the

TLB.

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the

TLB. Otherwise there is a high degree of page faults.

Silberschatz, Galvin and Gagne 200210.48Operating System Concepts

Increasing the Size of the TLB

 Increase the Page Size. This may lead to an increase in

fragmentation as not all applications require a large page

size.

 Provide Multiple Page Sizes. This allows applications

that require larger page sizes the opportunity to use them

without an increase in fragmentation.

Silberschatz, Galvin and Gagne 200210.49Operating System Concepts

Other Considerations (Cont.)

 Program structure

 int A[][] = new int[1024][1024];

 Each row is stored in one page

 Program 1 for (j = 0; j < A.length; j++)

for (i = 0; i < A.length; i++)

A[i,j] = 0;

1024 x 1024 page faults

 Program 2 for (i = 0; i < A.length; i++)

for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

Silberschatz, Galvin and Gagne 200210.50Operating System Concepts

Other Considerations (Cont.)

 I/O Interlock – Pages must sometimes be locked into

memory.

 Consider I/O. Pages that are used for copying a file from

a device must be locked from being selected for eviction

by a page replacement algorithm.

Silberschatz, Galvin and Gagne 200210.51Operating System Concepts

Reason Why Frames Used For I/O Must Be In Memory

Silberschatz, Galvin and Gagne 200210.52Operating System Concepts

Operating System Examples

 Windows NT

 Solaris 2

Silberschatz, Galvin and Gagne 200210.53Operating System Concepts

Windows NT

 Uses demand paging with clustering. Clustering brings
in pages surrounding the faulting page.

 Processes are assigned working set minimum and
working set maximum.

 Working set minimum is the minimum number of pages
the process is guaranteed to have in memory.

 A process may be assigned as many pages up to its
working set maximum.

 When the amount of free memory in the system falls
below a threshold, automatic working set trimming is
performed to restore the amount of free memory.

 Working set trimming removes pages from processes that
have pages in excess of their working set minimum.

Silberschatz, Galvin and Gagne 200210.54Operating System Concepts

Solaris 2

 Maintains a list of free pages to assign faulting processes.

 Lotsfree – threshold parameter to begin paging.

 Paging is peformed by pageout process.

 Pageout scans pages using modified clock algorithm.

 Scanrate is the rate at which pages are scanned. This
ranged from slowscan to fastscan.

 Pageout is called more frequently depending upon the
amount of free memory available.

Silberschatz, Galvin and Gagne 200210.55Operating System Concepts

Solar Page Scanner

