2TMENT OF INFORMATION TECHNOLOGY

TB201 - Design and Analysis of Algorithms

II YEAR IV SEM
NIT 2 - Brute Force and Divide and Conquer

- Divide and Conquer-Multiplication of large Integers

$$
\widehat{24}=14 \underline{5} 2
$$

$$
\begin{aligned}
& x+2020 \\
& x 3=60
\end{aligned}
$$

$$
\begin{array}{r}
22 \\
\times 43 \\
\hline 66 \\
80
\end{array}
$$

inpiying roui uigitimegeis

T	0	
4	3	
1	2	
8	6	(43×2)
3	0	(43×1)
1	6	

$$
\begin{array}{|rrrrrrr}
\hline & & 1 & 2 & 7 & 2 \\
& x & 1 & 3 & 6 & 4 \\
\hline & & 5 & 0 & 8 & 8 \\
& 7 & 6 & 3 & 2 & 0 \\
& 3 & 8 & 1 & 6 & 0 & 0 \\
+1 & 2 & 7 & 2 & 0 & 0 & 0 \\
\hline 1 & 7 & 3 & 5 & 0 & 0 & 8 \\
\hline
\end{array}
$$

r the problem of multiplying two n-digit inte ted by arrays of their digits such as $a=a_{1} a_{2}$.. de-school algorithm:

$$
a_{n} b_{1} \quad b_{2} \ldots \quad b_{n}
$$

$d_{12} \ldots d_{1 n}$
$d_{22} \ldots d_{2 n}$
$d_{n 2} \ldots d_{n n}$

2-digit integers $a=23$ and $b=14$ can be ed as follows:
$+3.10^{\circ}$ and $14=1.10^{1}+4.10^{\circ}$.
s multiply them:
$\left(2.10^{1}+3.10^{0}\right) *\left(1.10^{1}+4.10^{0}\right)$
$0^{2}+(2 * 4+3 * 1) 10^{1}+(3 * 4) 10^{0}$
ula uses four digit multiplications (i.e., n^{2}). rm can be computed by
$1=(2+3) *(1+4)-2 * 1-3 * 4$. any multiplications? 1 or 3
is the product of their first digits,
b_{0} is the product of their second digits, $\left.+a_{0}\right) *\left(b_{1}+b_{0}\right)-\left(c_{2}+c_{0}\right)$ is the product he a 's digits and the sum of the b 's digit of c_{2} and c_{0}.
eral, for two n-digit integers a and b where n e even number. We denote the first half of th by a_{1} and the second half by a_{0}; for b, the nota and b_{0}, respectively. In these notations, $a=$ s that $a=a_{1} 10^{n / 2}+a_{0}$, and $b=b_{1} b_{0}$ implies tha ${ }^{2}+b_{0}$.
le: $a=21|35, b=40| 14$

$$
\begin{aligned}
& =\left(a_{1} 10^{n / 2}+a_{0}\right) *\left(b_{1} 10^{n / 2}+b_{0}\right) \\
&) 10^{n}+\left(a_{1}^{*} b_{0}+a_{0} * b_{1}\right) 10^{n / 2}+\left(a_{0} * b_{0}\right)
\end{aligned}
$$

$c_{1} 10^{n / 2}+c_{0}$, where
b_{1} is the product of their first halves,

* b_{0} is the product of their second halves,
$\left.+a_{0}\right) *\left(b_{1}+b_{0}\right)-\left(c_{2}+c_{0}\right)$ is the product of the st halves and the sum of the b 's halves minus the su
c_{0}.
astead of using 4 multiplications to
e $a^{*} b$, we just need to compute 3
lications (i.e., $a_{1}^{*} b_{1},\left(a_{0}^{*} b_{0}\right)$, and $\left(a_{1}+a_{0}\right)$
$\left.b_{0}\right)$).
pply the same method for computing the produ we have recursive algorithm for computing prod gers. The recursion is stopped when n becomes
ply the same method for computing the produc e have recursive algorithm for computing produ ers. The recursion is stopped when n becomes on
iplication of n-digit numbers requires three mult git numbers, the recurrence for the n tions $M(n)$ will be
$(n / 2)$ for $n>1, M(1)=1$.

$$
=3 M\left(2^{k-1}\right)=3\left[3 M\left(2^{k-2}\right)\right]=3^{2} M\left(2^{k-2}\right)
$$

$$
3^{i} M\left(2^{k-i}\right)=\ldots=3^{k} M\left(2^{k-k}\right)=3^{k}
$$

$$
x=\log _{2} n
$$

$$
M(n)=3^{\log _{2} n}=n^{\log } 2^{3} \approx n^{1.585}<n^{2} .
$$

e running time of multiplication of large integers

 nquer?er multiplication cant solved by using brute force.

Thank Iou

