An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

RTMENT OF INFORMATION TECHNOLOGY

TB201 – Design and Analysis of Algorithms

II YEAR IV SEM

INIT 2 – Brute Force and Divide and Conquer

- Divide and Conquer-Multiplication of large Integers

integers integers

inprying rour aight integers

er the problem of multiplying two *n*-digit intented by arrays of their digits such as $a = a_1a_2$.

de-school algorithm: $a_n b_1 b_2 \dots b_n$

 $d_{12} \dots d_{1n}$ $d_{22} \dots d_{2n}$

... ...

 $d_{n2} \dots d_{nn}$

- 2-digit integers *a* = 23 and *b* = 14 can be ed as follows:
- 1 + 3.10° and 14 = 1.10¹ + 4.10°.
- s multiply them:
- $(2.10^{1} + 3.10^{0}) * (1.10^{1} + 4.10^{0})$
- $0^{2} + (2 * 4 + 3 * 1)10^{1} + (3 * 4)10^{0}$

ula uses four digit multiplications (i.e.,*n*²). Frm can be computed by 1 = (2 + 3) * (1 + 4) - 2 * 1 - 3 * 4. Any multiplications? 1 or 3 WAALDANS

-digit integers $a = a_1 a_0$ and $b = b_1 b_0$, the can be computed by $c_2 10^2 + c_1 10^1 + c_0$,

is the product of their first digits,

 b_0 is the product of their second digits, + a_0) * (b_1 + b_0) - (c_2 + c_0) is the product the *a*'s digits and the sum of the *b*'s digit of c_2 and c_0 .

eral, for two *n*-digit integers *a* and *b* where *n* we even number. We denote the first half of the by a_1 and the second half by a_0 ; for *b*, the notation and b_0 , respectively. In these notations, *a* = s that $a = a_1 10^{n/2} + a_0$, and $b = b_1 b_0$ implies that $a^2 + b_0$.

ole: *a* = 21 35, *b* = 40 14

THE SUMPLIES AND A MILLER AND A M

 $= (a_1 10^{n/2} + a_0) * (b_1 10^{n/2} + b_0)$ $= (a_1 10^{n/2} + (a_1 * b_0 + a_0 * b_1) 10^{n/2} + (a_0 * b_0)$ $= c_1 10^{n/2} + c_0, \text{ where}$

 b_1 is the product of their first halves,

c and conquer monthmin

* b_0 is the product of their second halves, $a_1 + a_0$ * $(b_1 + b_0) - (c_2 + c_0)$ is the product of the sum halves and the sum of the b's halves minus the succonditions of the sum of the b's halves minus the succonditions of the succes o

instead of using 4 multiplications to e a * b, we just need to compute 3 lications (i.e., $a_1 * b_1$, $(a_0 * b_0)$, and $(a_1 + a_0)$ b_0).

e and conquer mgortenni

pply the same method for computing the produce we have recursive algorithm for computing prod egers. The recursion is stopped when *n* becomes c

ply the same method for computing the product ve have recursive algorithm for computing produ ers. The recursion is stopped when *n* becomes on

e and conquer monthm

- tiplication of n-digit numbers requires three mult git numbers, the recurrence for the nut tions M(n) will be
- (n/2) for n > l, M(l) = l.

e and conquer mgor tenni

g it by backward substitutions for n

-

 $= 3M(2^{k-1}) = 3[3M(2^{k-2})] = 3^2M(2^{k-2})$ $3^iM(2^{k-i}) = \dots = 3^kM(2^{k-k}) = 3^k.$ $K = \log_2 n,$ $M(n) = 3^{\log_2 n} = n^{\log_2 3} \approx n^{1.585} < n^2.$

e running time of multiplication of large integers nquer?

er multiplication cant solved by using brute force.

