
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITB201 – DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR IV SEM

UNIT-II-BRUTE FORCE AND DIVIDE AND CONQUER

TOPIC: Divide and Conquer –Merge Sort

Prepared by
S.Rajasulochana,AP/IT

Identify the problem

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Problem

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Problem Example

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

General Method

Divide and conquer algorithm consists of two parts:

Divide :Divide the problem into a number of sub problems. The sub problems
are solved recursively.are solved recursively.

Conquer :The solution to the original problem is then formed from the
solutions to the sub problems (patching together the answers).

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Control Abstraction of Divide and Conquer

DANDC (P)

{

if SMALL (P) then return S (p); else

{

divide p into smaller instances p1, p2, …. Pk, k ³ 1; apply DANDC to
each of these sub problems;

return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk));

}

}

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

If the sizes of the two sub problems are approximately equal then the
computing
time of DANDC is:

Where, T (n) is the time for DANDC on ‘n’ inputs
g (n) is the time to complete the answer directly for small inputs and
f (n) is the time for Divide and Combine

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Applications
Sorting Searching

Min max

Large Interger
multiplication

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Merge sort

 Merge sort algorithm is a classic example of divide and conquer. To
sort an array, recursively, sort its left and right halves separately and
then merge them.

 The time complexity of merge mort in the best case, worst case and  The time complexity of merge mort in the best case, worst case and
average case is O(n log n) and the number of comparisons used is
nearly optimal.

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Algorithm
Algorithm MERGESORT (low, high)

// a (low : high) is a global array to be sorted.

{

i ptr

if (low < high)

{

mid := (low + high)/2 //finds where to split the set mid := (low + high)/2 //finds where to split the set

MERGESORT(low, mid)//sort one subset

MERGESORT(mid+1, high) //sort the other subset

MERGE(low, mid, high) // combine the results

}}

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Example
For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate merge sort
algorithm:

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Analysis of Merge Sort
We will assume that ‘n’ is a power of 2, so that we always split into even halves, so we
solve for the case n = 2k.

For n = 1, the time to merge sort is constant, which we will be denote by 1. Otherwise, the
time to merge sort ‘n’ numbers is equal to the time to do two recursive merge sorts of size
n/2, plus the time to merge, which is linear. The equation says this exactly:

T(1) = 1

T(n) = 2 T(n/2) + nT(n) = 2 T(n/2) + n

This is a standard recurrence relation, which can be solved several ways. We will solve by
substituting recurrence relation continually on the right–hand side.

We have, T(n) = 2T(n/2) + n

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

Divide and Conquer-Merge Sort/19ITB201-DAA/S.Rajasulochana,AP/IT/SNSCT

