SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF MCA

19CAT602 - DATA STRUCTURES \& ALGORITHMS

I YEAR I SEM

UNIT IV - Greedy and Backtracking

TOPIC 21- Greedy Method: Prim's and Kruskal's Algorithm

Greedy Algorithms:

- Many real-world problems are optimization problems in that they attempt to find an optimal solution among many possible candidate solutions.
- An optimization problem is one in which you want to find, not just a solution, but the best solution
- A "greedy algorithm" sometimes works well for optimization problems
- A greedy algorithm works in phases. At each phase: You take the best you can get right now, without regard for future consequences. You hope that by choosing a local optimum at each step, you will end up at a global optimum
- A familiar scenario is the change-making problem that we often encounter at a cash register: receiving the fewest numbers of coins to make change after paying the bill for a purchase.

Greedy Technique:

- Constructs a solution to an optimization problem piece by
- piece through a sequence of choices that are:
1.feasible, i.e. satisfying the constraints
2.locally optimal (with respect to some neighborhood definition)
3.greedy (in terms of some measure), and irrevocable
- For some problems, it yields a globally optimal solution for every instance. For most, does not but can be useful for fast approximations. We are mostly interested in the former case in this class.

Greedy Techniques:

- Optimal solutions:
- change making for "normal" coin denominations
- minimum spanning tree (MST)
- Prim's MST
- Kruskal's MST
- simple scheduling problems
- Dijkstra's algo
- Huffman codes
- Approximations/heuristics:
- traveling salesman problem (TSP)
- knapsack problem
- other combinatorial optimization problems

Greedy scenario:

- Feasible
- Has to satisfy the problem's constraints
- Locally Optimal
- Has to make the best local choice among all feasible choices available on that step
- If this local choice results in a global optimum then the problem has optimal substructure

- Irrevocable

- Once a choice is made it can't be un-done on subsequent steps of the algorithm
- Simple examples:
- Playing chess by making best move without look-ahead
- Giving fewest number of coins as change
- Simple and appealing, but don't always give the best solution

Minimum Spanning Tree (MST):

16 states of Spanning tree can happened

Solution for MST:

Example A cable company want to connect five villages to their network which currently extends to the market town What is the minimum length of cable needed?

Kruskal's Algorithm:

MST-KRUSKAL(G, w)

1. $A \leftarrow \varnothing$
2. for each vertex $\vee \mathrm{V}$ [G]
3. do MAKE-SET(v)
4.sort the edges of E into nondecreasing order by weight w
5.for each edge (u, v) E, taken in nondecreasing order by weight
4. do if $\operatorname{FIND}-\operatorname{SET}(u) \neq \operatorname{FIND}-\operatorname{SET}(v)$
5. then $A \leftarrow A\{(u, v)\}$
6. UNION(u, v)
7. return A

List the edges in order of size:
E

ED 2	AB 3
AE 4	CD 4
BC 5	EF 5
CF 6	AF 7
BF 8	CF 8

Kruskal's Algorithm:

Total weight of tree: 18

Prim's Algorithm:

```
MST-PRIM(G, w, r)
1. for each u V [G]
2. \(\operatorname{do} \operatorname{key}[u] \leftarrow \infty\)
3. \(\pi[\mathrm{u}] \leftarrow \mathrm{NIL}\)
4. \(\mathrm{key}[\mathrm{r}] \leftarrow 0\)
5. \(\mathrm{Q} \leftarrow \mathrm{V}[\mathrm{G}]\)
6. while \(\mathrm{Q} \neq \emptyset\)
7. \(\quad\) do \(u \leftarrow\) EXTRACT-MIN \((\mathrm{Q})\)
8. for each \(v \operatorname{Adj}[u]\)
10.
11.
```

9.
```
do if \(v \mathrm{Q}\) and \(\mathrm{w}(\mathrm{u}, \mathrm{v})<\operatorname{key}[\mathrm{v}]\)
then \(\pi[\mathrm{v}] \leftarrow \mathrm{u}\)
\(\mathrm{key}[\mathrm{v}] \leftarrow \mathrm{w}(\mathrm{u}, \mathrm{v})\)
```


Prim's Algorithm:

Select any vertex

A

Select the shortest edge connected to that vertex

AB 3

Prim's Algorithm:

All vertices have been connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18
E

Greedy Algorithms:

There are some methods left:

- Dijkstra's algorithm
- Huffman's Algorithm
- Task scheduling
- Travelling salesman Problem etc.
- Dynamic Greedy Problems

We can find the optimized solution with Greedy method which may be optimal sometime.

THANK YOU

