

#### SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# 19EET204 / DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS II YEAR / IV SEMESTER UNIT-II: DESIGN OF COMBINATIONAL AND SEQUENTIAL CIRCUITS

LATCH & FLIP FLOPS - SR



## TOPIC OUTLINE





Memory devices

Latch

SR Flip Flop

D Flip Flop

IC Devices

Recap





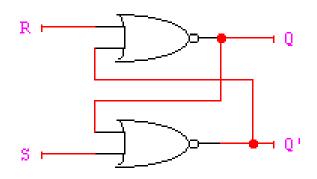
### MEMORY DEVICES

#### **Latches:**

- A latch is a memory element whose excitation signals control the state of the device.
- A latch has two stages set and reset. Set stage sets the output to 1. Reset stage set the output to 0.
- It is Asynchronous Sequential Element

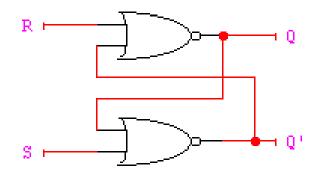
#### Flip-flops:

- A flip-flop is a memory device that has **clock signals** control the state of the device.
- It is Synchronous Sequential Element






#### LATCH


#### **RS** Latch

- The RS latch is the basic memory element consists of two cross-coupled NOR gates.
- It has two input signals, S set signal and R reset signal.
- It also has two outputs Q and Q'; and two states, a set state when Q = 1 and a reset state when Q = 0 (Q'=1)



## RS latch – Circuit, Truth table with comments

| S | R | Q | Q' |
|---|---|---|----|
| 0 | 0 | 1 | 0  |
| 0 | 1 | 0 | 1  |
| 1 | 0 | 1 | 0  |
| 1 | 1 | ? | ?  |

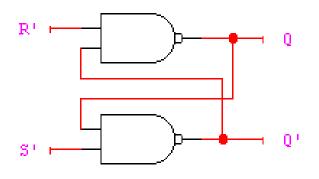


| S | R | Comments             |
|---|---|----------------------|
| 0 | 0 | hold (No change)     |
| 0 | 1 | 0 reset              |
| 1 | 0 | 1 set                |
| 1 | 1 | unstable (Forbidden) |





## RS Latch -State table, Ch. Equation


| S | R | Q(n) | Q(n+1) | _         |                           |
|---|---|------|--------|-----------|---------------------------|
| 0 | 0 | 0    | 0      | -<br>Hald |                           |
| 0 | 0 | 1    | 1      | Hold      |                           |
| 0 | 1 | 0    | 0      | D         | Characteristics Equation: |
| 0 | 1 | 1    | 0      | Reset     | Q(t+1) = S(t) + R'(t)Q(t) |
| 1 | 0 | 0    | 1      | C . 4     | $Q^+ = S + R'Q$           |
| 1 | 0 | 1    | 1      | Set       |                           |
| 1 | 1 | 0    | ?      | D 1111    |                           |
| 1 | 1 | 1    | ?      | Forbidden |                           |



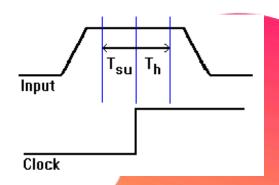
## RS latch – Truth table with



## NAND gates

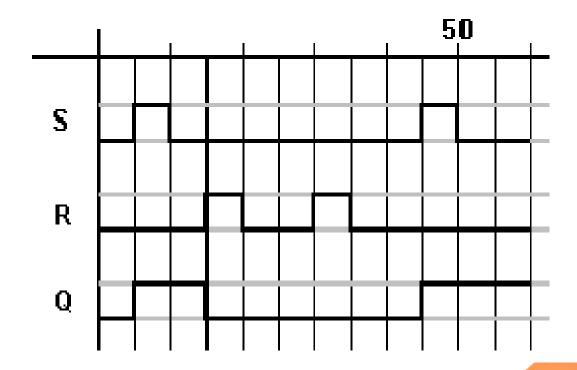


| S | R | Q         |
|---|---|-----------|
| 0 | 0 | No change |
| 0 | 1 | 0 reset   |
| 1 | 0 | 1 set     |
| 1 | 1 | Forbidden |




## State, Clock, Setup Time, Hold Time




The Clocking event can be either from low to high or from high to low. The input signal around clocking event must remain unchanged in order to have a correct effect on the outcome of the new state.

- $T_{\rm su}$ : the minimum time interval preceding the clocking event during the input signal must remain unchanged
- $-T_{\rm h}$ : the minimum time interval after edge of the clocking event during the input signal must remain unchanged





## **Timing Diagram of RS-Latch**





## LATCH / FLIP-FLOP



## **DEVICES**

| Device  | # of<br>Elements | Description                                                     |  |
|---------|------------------|-----------------------------------------------------------------|--|
| 74LS73A | 2                | Negative-edge triggered JK flip-flop with clear                 |  |
| 7474    | 2                | Positive-edge triggered D flip-flop with preset and clear       |  |
| 74LS75  | 4                | D Latch with enable                                             |  |
| 7476    | 2                | Pulse-edge triggered JK flip-flop with preset and clear         |  |
| 74111   | 2                | Master-slave JK flip-flop with preset, clear, and data lock out |  |
| 74116   | 2                | 4-bit hazard-free D latch with clear and dual enable            |  |
| 74175   | 4                | Positive-edge triggered D flip-flop with clear                  |  |
| 74273   | 8                | Positive-edge triggered D flip-flop with clear                  |  |
| 74276   | 4                | Negative-edge triggered JK flip-flop with preset and clear      |  |
| 74279   | 4                | SR latch with active-low inputs                                 |  |



## **SUMMARIZE**





#### ...THANK YOU