1. A random variable \boldsymbol{X} has the following probability distribution.

X	0	1	2	3	4	5	6	7
$P(x)$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Find
(1) The value of \boldsymbol{k}
(2) Evaluate $\mathrm{P}(\mathrm{X}<6), \mathrm{P}(0<\mathrm{X}<5)$
(3) The smallest value of a for which $P(X \leq a)>\frac{1}{2}$.
(4) The Cumulative distribution function.
2. A random variable X has the following probability function

X	0	1	2	3	4	5	6	7	8
$\mathrm{P}(\mathrm{x})$	a	3 a	5 a	7 a	9 a	11 a	13 a	15 a	17 a

Find (i) Determine the value of ' a '
(ii) Find $\mathrm{P}(\mathrm{X}<3), \mathrm{P}(\mathrm{X} \geq 3), \mathrm{P}(0<\mathrm{X}<5)$
(iii) Find the distribution function of X.
3. A random variable X has the following probability distribution

X	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{x})$	0.1	K	0.2	2 K	0.3	3 K

Find (1) The value of $\mathrm{K}(2)$ Evaluate $\mathrm{P}(\mathrm{X}<2)$ and $\mathrm{P}(-2<\mathrm{X}<2)$
(3) Find the Cumulative distribution of X (4) Find the mean of X.
4. If the Random variable X takes the value $1,2,3,4$ such that $2 \mathrm{P}(\mathrm{X}=1)=3 \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{X}=3)=5 \mathrm{P}(\mathrm{X}=4)$. Find the probability distribution.
5. A continuous R.V X has the p.d.f $f(x)=3 x^{2}, 0 \leq x \leq 1$. Find the value of a, such that $P(X \leq a)=P(X>a)$. Find the value b such that $\mathrm{P}(\mathrm{X}>\mathrm{b})=0.05$.
6. A continuous R.V. \boldsymbol{X} has the p.d.f. $f(x)=$ $\left\{\begin{array}{cc}\frac{k}{1+x^{2}} & -\infty<x<\infty \\ 0 & \text { otherwise }\end{array}\right.$

Find
(1) The value of \boldsymbol{k}
(2) Distribution function of X
(3) $\boldsymbol{P}(\boldsymbol{X} \geq \mathbf{0})$
7. The probability function of an infinite discrete distribution is given by $P(X=j)=\frac{1}{2^{x}}(x=1,2,3, \ldots)$
(1) Mean and variance of \boldsymbol{X}
(2) M.G.F
(3) $\quad P(X$ is even $)$
8. A random variable has the $\mathrm{pdf}(x)=$
$\left\{\begin{array}{ll}2 e^{-2 x} & x \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$. Obtain the mgf and first four moments about the origin. Also find the mean and variance.
9. Find the M.G.F of the random variable with the probability law $P(X=x)=q^{x-1} p, x=1,2,3, \ldots$. Find the mean and variance.
10. A continuous Random variable X has the
distribution function $F(x)=\left\{\begin{array}{cc}0 & x \leq 1 \\ k(x-1)^{4} & 1 \leq x \leq 3 \\ 1 & x>3\end{array}\right.$.
(1) Find K
(2) p.d.f $f(x)$
(3) $\mathrm{P}(\mathrm{X}<2)$.
11. The diameter of an electric cable say X, is assumed to be a continuous Random variable with P.d.f

$$
f(x)=6 x(1-x), 0 \leq x \leq 1
$$

(i) Check that the above is a P.d.f
(ii) Determine a and b such that $P(X<b)=P(X>b)$
(iii) Find the distribution function of X
(iv) Find $P\left(X \leq \frac{1}{2} / \frac{1}{3}<X<\frac{2}{3}\right)$
12. If the probability density of X is given by

$$
f(x)=\left\{\begin{array}{cc}
2(1-x) & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find its rth moment. Hence evaluate $E\left[(2 x+1)^{2}\right]$
13. If the cumulative distribution function of X is given
by $F(x)= \begin{cases}1-\frac{4}{x^{2}}, & x>2 \\ 0 & , x \leq 2\end{cases}$
Find (i) $\mathrm{P}(\mathrm{X}<3)$ (ii) $\mathrm{P}(4<\mathrm{X}<5) \quad$ (iii) $P(X \geq 3)$.
14. Experience has shown that walking in a certain park, the time X (in mins), between seeing two people smoking has a density function of the form $f(x)=$ $\begin{cases}\lambda x e^{-x} & x>0 \\ 0 & \text { elsewhere }\end{cases}$
(a) Calculate the value of λ
(b) Find the distribution function of X
(c) What is the probability that a person who has just seen a person smoking will see another person smoking in 2 to 5 minutes? In atleast 7 minutes?
15. The density function of a random variable X is given by $f(x)=\left\{\begin{array}{c}k x(2-x)^{2} \quad 0<x<2 \\ 0 \quad \text { otherwise }\end{array}\right.$ find (i) k (ii) Mean and variance of the distribution.
16. Find the M.G.F for the distribution $f(x)=$
$\left\{\begin{array}{ll}\frac{x}{4} & e^{-\frac{x}{2}} x>0 \\ 0 & \text { otherwise }\end{array}\right.$ find (i) M.G.F (ii) First Four moments obout the origin
17. A random variable has the p.d.f given by

$$
f(x)=\left\{\begin{array}{cc}
2 e^{-2 x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

Find (a) The moment generating function
(b) First four moments about the origin.

