1. Determine the binomial distribution whose mean is 9 and whose standard deviation is $\frac{3}{2}$.

Answer:

np = 9 and npq =
$$\frac{9}{4}$$
. $q = \frac{npq}{np} = \frac{1}{4} \Rightarrow p = 1 - q = \frac{3}{4}$
np = 9 \Rightarrow n= 9 $\times \frac{4}{3} = 12$

∴P[X=r] = 12
$$C_r \cdot \left[\frac{3}{4}\right]^r \left[\frac{1}{4}\right]^{12-r}$$
, $r = 0,1,2,....12$

2. A die is thrown 3 times. If getting a '6' is considered a success, find the probability of atleast two successes.

Answer:

$$P=1/6;$$
 $q=5/6;$ $n=3.$

P[atleast two successes] = P(2) + P(3)

$$=3C_2 \cdot \left[\frac{1}{6}\right]^2 \frac{5}{6} + 3C_3 \cdot \left[\frac{1}{6}\right]^3 = \frac{2}{27}$$

3. Find the MGF of binomial distribution.

Answer:

$$M_{x}(t) = \sum_{r=0}^{n} nC_{r} \cdot (pe^{t})^{r} \cdot q^{n-r}$$
$$= (q + pe^{t})^{n}$$

4. For a random variable X, $M_x(t) = \frac{1}{81} (e^t + 2)^4$, find $P[X \le 2]$.

Answer:

$$M_{x}(t) = \left(\frac{2}{3} + \frac{1}{3}e^{t}\right)^{4}.$$

For Binomial distribution, $M_x(t) = (q + pe^t)$

$$∴$$
 n=4, q=2/3, p=1/3

$$P[X \le 2] = P(0) + P(1) + P(2)$$

$$= \left(\frac{2}{3}\right)^4 + 4C_1 \frac{1}{3} \left(\frac{2}{3}\right)^3 + 4C_1 \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^2$$

$$= \frac{1}{81} [16 + 32 + 24] = \frac{72}{81}$$

$$= 0.8889$$

5. The mean and variance of a binomial variance are 4 and 4/3 respectively, find

$$P[X \ge 1]$$
.

Answer:

6. For a binomial distribution, mean is 6 and standard deviation is $\sqrt{2}$. Find the first two terms of the distribution.

Answer:

np = 6, npq = 2;
$$q = \frac{2}{3} \Rightarrow q = \frac{1}{3}$$
 $\therefore p = \frac{2}{3}$. Here n = 9.
The first two terms are $\left(\frac{1}{3}\right)^9$, $9C_1\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^8$

7. A certain rare blood can be found in only 0.05% of people. If the population of a randomly selected group is 3000, what is the probability that atleast 2 people in the group have this rare blood type?

P=0.05% => p=0.0005; n = 3000;
$$\Lambda = np$$

$$\Rightarrow \qquad \Lambda = 3000 \text{ x} \frac{5}{10000} = 1.5$$

$$P[X \ge 2] = 1 - P(X < 2) = 1 - P(X = 1)$$

$$= 1 - e^{-1.5} \left(1 + \frac{1.5}{1!} \right) = 0.4422$$

8. It is known that 5% of the books bound at a certain bindery have defective bindings. Find the probability that 2 of 100 books bound by this bindery will have defective bindings.

Answer:

$$A = np \Rightarrow A = 100 \times 5/100 = 5$$

$$P[X=2] = \frac{5^2 e^{-5}}{2!} = 0.084$$

9. If X is a poisson variate such that P(X=2) = 9P(X=4) + 90P(X=6), find the variance.

Answer:

$$\frac{e^{-\lambda}\lambda^2}{2!} = \frac{9e^{-\lambda}\lambda^4}{4!} + \frac{90e^{-\lambda}\lambda^6}{6!} \Longrightarrow \lambda^4 + 3\lambda^2 - 4 = 0$$

$$\implies (\lambda^2 + 4)(\lambda^2 - 1) = 0$$

$$\therefore \lambda^2 = 1 \Longrightarrow \text{variance} = \lambda = 1.$$

10. The moment generating function of a random variable X is given by $M_x(t) = e^{3(e^t - 1)}$. Find P(X=1)

Answer:

$$M_x(t) = e^{\lambda(e^t - 1)} = e^{3(e^t - 1)} \Longrightarrow \lambda = 3$$

$$P(X = 1) = \lambda e^{-\lambda} \Longrightarrow P(X = 1) = 3e^{-3}.$$

11. State the conditions under which the position distribution is a limiting case of the Binomial distribution.

Answer:

- i) $n \to \infty$
- ii) $p \rightarrow 0$
- iii) np= λ , a constant
- 12. Show that the sum of 2 independent poisson variates is a poisson variates.

Let
$$X \sim P(\lambda_1)$$
 and $Y \sim P(\lambda_2)$

Then
$$M_{\chi}(t) = e^{\lambda_1(e^t - 1)}$$
; $M_{\chi}(t) = e^{\lambda_2(e^t - 1)}$

$$M_{x+y}(t) = M_x(t)M_y(t) = e^{(e^t-1)(\lambda_1+\lambda_2)}$$

 \implies X + Y is also a poisson variate

13. In a book of 520 pages, 390 typo-graphical errors occur. Assuming poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error.

Answer:

$$A = \frac{390}{520} = 0.75$$

$$P(X=x) = \frac{e^{-\lambda} \lambda^x}{x!} = \frac{e^{-0.75} (0.75)^x}{x!}, x = 0.1.2,...$$

Required probability = $[P(X = 0)]^5 = (e^{-0.75})^5 = e^{-3.75}$

14. If X is a poisson variate such that P(X=2)=2/3 P(X=1) evaluate P(X=3).

Answer:

$$\frac{e^{-\lambda} \lambda^2}{2!} = \frac{2}{3} \frac{e^{-\lambda} \lambda}{1!} \Longrightarrow \lambda = \frac{4}{3}$$

$$\therefore P[X=3] = \frac{e^{-\lambda} \left(\frac{4}{3}\right)^3}{3!}$$

15.If for a poisson variate X, $E(X^2) = 6$, What is E(X)?

Answer:

$$\lambda^{2} + \lambda = 6 \Longrightarrow \lambda^{2} + \lambda - 6$$
$$= 0 \Longrightarrow (\lambda + 3)(\lambda - 2) = 0 \Longrightarrow \lambda = 2, -3$$

But
$$\lambda > 0$$
, $\lambda = 2$. $E(X) = \lambda = 2$

16. If X is a poisson variate with mean λ , show that $E(X^2) = \lambda E(X + 1)$.

$$E(X^2) = \lambda^2 + \lambda$$

$$E(X+1) = E(X)+1 = A + 1$$

$$\therefore E(X^2) = \lambda (\lambda + 1) = \lambda E(X + 1)$$

17. The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{2}$. What is the probability that a repair takes at least 10 hours given that its duration exceeds 9 hours?

Answer:

Let X be the R.V which represents the time to repair the machine.

$$P[X \ge 10/x \ge 9] = P(X \ge 1)$$
 (by memory less property)

$$= \int_{1}^{\infty} \frac{1}{2} e^{-\frac{x}{2}} dx = 0.6065$$

18. The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{3}$. What is the probability that the repair time exceeds 3 hours?

Answer:

X- represent the time to repair the machine

P.d.f of X,
$$f(x) = \frac{1}{3}e^{-\frac{x}{3}}$$
, x>0

$$P(x>3) = \int_3^\infty \frac{1}{3} e^{-\frac{x}{3}} dx = e^{-1} = 0.3679$$

19. Find the MGF of an exponential distribution with parameter λ.

Answer:

$$M_x(t) = \lambda \int_0^\infty e^{tx} e^{-\lambda x} dx = \lambda \int_0^\infty e^{-(\lambda - x)x} dx$$

$$= \frac{\lambda}{\lambda - t} = \left(1 - \frac{t}{\lambda}\right)^{-1}$$

20. Mention any four properties of normal distribution?

- (1) The curve is bell shaped
- (2) Mean, Median, Mode coincide.
- (3) All odd central moments vanish
- (4) X-axis is an asymptote to the normal curve
- 21.If X is normal variate with mean 30 and S.D 5, find P[26 < X < 40]

Answer:

P
$$[26 < X < 40] = P [-0.8 \le Z \le 2]$$
 where $Z = \frac{X-30}{5}$
= P $[0 \le Z \le 0.8] + P[0 \le Z \le 2]$
= $0.2881 + 0.4772 = 0.7653$

22. If X is a normal variate with mean 30 and s.d 5, find P [$|X - 30| \le 5$].

Answer:

$$P[|X - 30| \le 5] = P[25 \le X \le 35] = P[-1 \le Z \le 1]$$

= $2P(2 \le Z \le 1) = 2(0.3413) = 0.6826$

23.X is normally distributed R.V with mean 12 and SD 4. Find P [$X \le 20$].

Answer:

P [
$$X \le 20$$
] = P [$Z \le 2$] where $Z = \frac{X-12}{4}$
= P [$-\infty \le Z \ 0$] + P [$0 \le Z \le 2$]

$$= 0.5 + 0.4772 = 0.9772$$

24. For a certain normal distribution, the first moment about 10 is 40 and the fourth moment about 50 is 48. Find the mean and s.d of the distribution.

Answer:

Mean A +
$$\mu_{1}^{'}$$
 \Rightarrow Mean = 10 + 40 = 50
 $\mu_{1}^{'}$ (*aboutthepointX* = 50) = 48 \Rightarrow μ_{4} = 48
Since mean is 50, $3\sigma^{4}$ = 48
 σ = 2.

25.If X is normally distributed with mean 8 and s.d4 , find P ($10 \leq X \leq 15$).

P (
$$10 \le X \le 15$$
) = P [$0.5 \le X \le 1.75$]
= P [$0.5 \le X \le 1.75$] - P [$0 \le X \le 0.5$]
= 0.2684

26.X is a normal variate with mean 1 and variance 4, Y is another normal variate independent of X with mean 2 and variance 3, what is the distribution of

$$X + 2Y$$
?

E
$$[X + 2Y] = E(X) + 2E(Y) = 1 + 4 = 5$$

 $V[X+2Y] = V(X) + 4V(Y) = 4+4(3) = 16$
 $X + 2Y \sim N(5,16)$ by additive property.