1. Determine the binomial distribution whose mean is 9 and whose standard deviation is $\frac{3}{2}$.

Answer:

$\mathrm{np}=9$ and $\mathrm{npq}=\frac{9}{4} . \quad \mathrm{q}=\frac{n p q}{n p}=\frac{1}{4} \Rightarrow p=1-q=\frac{3}{4}$
$\mathrm{np}=9 \Rightarrow \mathrm{n}=9 \times \frac{4}{3}=12$
$\therefore \mathrm{P}[\mathrm{X}=\mathrm{r}]=12 C_{r} \cdot\left[\frac{3}{4}\right]^{r}\left[\frac{1}{4}\right]^{12-r}, r=0,1,2, \ldots . .12$
2. A die is thrown 3 times. If getting a ' 6 ' is considered a success, find the probability of atleast two successes.

Answer:

$\mathrm{P}=1 / 6 ; \quad \mathrm{q}=5 / 6 ; \quad \mathrm{n}=3$.
$\mathrm{P}[$ atleast two successes $]=\mathrm{P}(2)+\mathrm{P}(3)$

$$
=3 C_{2} \cdot\left[\frac{1}{6}\right]^{2} \frac{5}{6}+3 C_{3} \cdot\left[\frac{1}{6}\right]^{3}=\frac{2}{27}
$$

3. Find the MGF of binomial distribution.

Answer:

$$
\begin{aligned}
M_{x}(t) & =\sum_{r=0}^{n} n C_{r} \cdot\left(p e^{t}\right)^{r} \cdot q^{n-r} \\
& =\left(q+p e^{t}\right)^{n}
\end{aligned}
$$

4. For a random variable $\mathrm{X}, M_{x}(t)=\frac{1}{81}\left(e^{t}+2\right)^{4}$, find $\mathrm{P}[\mathrm{X} \leq 2]$.

Answer:

$$
M_{x}(t)=\left(\frac{2}{3}+\frac{1}{3} e^{t}\right)^{4}
$$

For Binomial distribution, $M_{x}(t)=\left(q+p e^{t}\right)$
$\therefore \mathrm{n}=4, \quad \mathrm{q}=2 / 3, \quad \mathrm{p}=1 / 3$
$\therefore \quad \mathrm{P}[\mathrm{X} \leq 2]=\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2)$

$$
\begin{aligned}
& =\left(\frac{2}{3}\right)^{4}+4 C_{1} \frac{1}{3}\left(\frac{2}{3}\right)^{3}+4 C_{1}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2} \\
& =\frac{1}{81}[16+32+24]=\frac{72}{81} \\
& =0.8889
\end{aligned}
$$

5. The mean and variance of a binomial variance are 4 and $4 / 3$ respectively, find
$P[X \geq 1]$.

Answer:

$\mathrm{np}=4, \quad \mathrm{npq}=\frac{4}{3} \Rightarrow q=\frac{1}{3}$ and $p=\frac{2}{3} \quad \therefore n=4 \times \frac{3}{2}=6$.
$P[X \geq 1]=1-P[X<1]=1-P[X=0]$
$=1-\left(\frac{1}{3}\right)^{6}=0.9986$
6. For a binomial distribution, mean is 6 and standard deviation is $\sqrt{2}$. Find the first two terms of the distribution.

Answer:

$\mathrm{np}=6, \quad \mathrm{npq}=2 ; q=\frac{2}{3} \Rightarrow q=\frac{1}{3} \quad \therefore p=\frac{2}{3}$. Here $\mathrm{n}=9$.
The first two terms are $\left(\frac{1}{3}\right)^{9}, 9 C_{1}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{8}$
7. A certain rare blood can be found in only 0.05% of people. If the population of a randomly selected group is 3000 , what is the probability that atleast 2 people in the group have this rare blood type ?

Answer:

$\mathrm{P}=0.05 \% \quad \Rightarrow \mathrm{p}=0.0005 ; \mathrm{n}=3000 ; \wedge=n p$
$\Rightarrow \quad \wedge=3000 \times \frac{5}{10000}=1.5$
$P[X \geq 2]=1-\mathrm{P}(\mathrm{X}<2)=1-\mathrm{P}(\mathrm{X}=1)$
$=1-e^{-1.5}\left(1+\frac{1.5}{1!}\right)=0.4422$
8. It is known that 5% of the books bound at a certain bindery have defective bindings. Find the probability that 2 of 100 books bound by this bindery will have defective bindings.

Answer:

$\wedge=n p \Rightarrow 人=100 \times 5 / 100=5$
$\therefore \mathrm{P}[\mathrm{X}=2]=\frac{5^{2} e^{-5}}{2!}=0.084$
9. If X is a poissonvariate such that $P(X=2)=9 P(X=4)+90 P(X=6)$, find the variance .

Answer:

$\frac{e^{-\lambda} \lambda^{2}}{2!}=\frac{9 e^{-\lambda} \lambda^{4}}{4!}+\frac{90 e^{-\lambda} \wedge^{6}}{6!} \Rightarrow \lambda^{4}+3 \lambda^{2}-4=0$
$\Rightarrow\left(\wedge^{2}+4\right)\left(\wedge^{2}-1\right)=0$
$\therefore \wedge^{2}=1 \Rightarrow$ variance $=\wedge=1$.
10. The moment generating function of a random variable X is given by $M_{x}(t)=e^{3\left(e^{t}-1\right)}$. Find $\mathrm{P}(\mathrm{X}=1)$

Answer:

$M_{x}(t)=e^{\wedge\left(e^{t}-1\right)}=e^{3\left(e^{t}-1\right)} \Rightarrow \wedge=3$
$\mathrm{P}(\mathrm{X}=1)=\wedge e^{-\wedge} \Rightarrow \mathrm{P}(\mathrm{X}=1)=3 e^{-3}$.
11. State the conditions under which the position distribution is a limiting case of the Binomial distribution.

Answer:

i) $\mathrm{n} \rightarrow \infty$
ii) $\mathrm{p} \rightarrow 0$
iii) $n p=\lambda$, a constant
12. Show that the sum of 2 independent poisson variates is a poisson variates.

Answer:

Let $\mathrm{X} \sim \mathrm{P}\left(\lambda_{1}\right) \quad$ and $\quad \mathrm{Y} \sim \mathrm{P}\left(\lambda_{2}\right)$

Then $M_{x}(t)=e^{\wedge_{1}\left(e^{t}-1\right)} ; \quad M_{y}(t)=e^{\wedge_{2}\left(e^{t}-1\right)}$
$M_{x+y}(t)=M_{x}(t) M_{y}(t)=e^{\left(e^{t}-1\right)\left(\Lambda_{1}+\lambda_{2}\right)}$
$\Longrightarrow \mathrm{X}+\mathrm{Y}$ is also a poissonvariate
13．In a book of 520 pages， 390 typo－graphical errors occur．Assuming poisson law for the number of errors per page，find the probability that a random sample of 5 pages will contain no error．

Answer：

$$
\wedge=\frac{390}{520}=0.75
$$

$P(\mathrm{X}=\mathrm{x})=\frac{e^{-\curlywedge} \wedge^{x}}{x!}=\frac{e^{-0.75}(0.75)^{x}}{x!}, \mathrm{x}=0.1 .2, \ldots$
Required probability $=[\mathrm{P}(\mathrm{X}=0)]^{5}=\left(e^{-0.75}\right)^{5}=e^{-3.75}$
14.

If X is a poissonvariate such that $P(X=2)=2 / 3 P(X=1)$ evaluate $P(X=3)$ ．

Answer：

$$
\begin{aligned}
& \frac{e^{-\curlywedge} \wedge^{2}}{2!}=\frac{2}{3} \frac{e^{-\curlywedge} \curlywedge}{1!} \Rightarrow \curlywedge=\frac{4}{3} \\
& \therefore \mathrm{P}[\mathrm{X}=3]=\frac{e^{-\curlywedge\left(\frac{4}{3}\right)^{3}}}{3!}
\end{aligned}
$$

15．If for a poisson variate $\mathrm{X}, \mathrm{E}\left(X^{2}\right)=6$ ，What is $\mathrm{E}(\mathrm{X})$ ？

Answer：

$$
\begin{aligned}
\wedge^{2}+\curlywedge=6 & \Rightarrow \wedge^{2}+\curlywedge-6 \\
& =0 \Rightarrow(\curlywedge+3)(\curlywedge-2)=0 \Rightarrow \curlywedge=2,-3
\end{aligned}
$$

But 人＞0，へ＝2． $\mathrm{E}(\mathrm{X})=\wedge=2$
16．If X is a poisson variate with mean \wedge ，show that $\mathrm{E}\left(X^{2}\right)=\wedge E(X+1)$ ．
Answer：
$\mathrm{E}\left(X^{2}\right)=\boldsymbol{\wedge}^{2}+\boldsymbol{\wedge}$
$\mathrm{E}(\mathrm{X}+1)=\mathrm{E}(\mathrm{X})+1=$ 人 +1
$\therefore \mathrm{E}\left(X^{2}\right)=人(\wedge+1)=人 E(X+1)$
17.The time (in hours) required to repair a machine is exponentially distributed with parameter $\wedge=\frac{1}{2}$. What is the probability that a repair takes atleast 10 hours given that its duration exceeds 9 hours?

Answer:

Let X be the R.V which represents the time to repair the machine.
$\mathrm{P}[\mathrm{X} \geq 10 / x \geq 9]=\mathrm{P}(\mathrm{X} \geq 1)$ (by memory less property)
$=\int_{1}^{\infty} \frac{1}{2} e^{-\frac{x}{2}} d x=0.6065$
18.The time (in hours) required to repair a machine is exponentially distributed with parameter $\wedge=\frac{1}{3}$. What is the probability that the repair time exceeds 3 hours?

Answer:

X- represent the time to repair the machine
P.d.f of $\mathrm{X}, \mathrm{f}(\mathrm{x})=\frac{1}{3} e^{-\frac{x}{3}}, \mathrm{x}>0$
$\mathrm{P}(\mathrm{x}>3)=\int_{3}^{\infty} \frac{1}{3} e^{-\frac{x}{3}} d x=e^{-1}=0.3679$
19. Find the MGF of an exponential distribution with parameter \wedge.

Answer:
$M_{x}(t)=\wedge \int_{0}^{\infty} e^{t x} e^{-\wedge x} d x=\wedge \int_{0}^{\infty} e^{-(\wedge-x) x} d x$
$=\frac{\wedge}{\wedge-t}=\left(1-\frac{t}{\wedge}\right)^{-1}$
20.Mention any four properties of normal distribution ?

Answer:

(1) The curve is bell shaped
(2) Mean,Median,Mode coincide.
(3) All odd central moments vanish
(4) X -axis is an asymptote to the normal curve
21.If X is normal variate with mean 30 and S.D 5, find $\mathrm{P}[26<\mathrm{X}<40]$

Answer:

$$
\begin{gathered}
\mathrm{P}[26<\mathrm{X}<40]=\mathrm{P}[-0.8 \leq \mathrm{Z} \leq 2] \text { where } \mathrm{Z}=\frac{X-30}{5} \\
=\mathrm{P}[0 \leq \mathrm{Z} \leq 0.8]+\mathrm{P}[0 \leq \mathrm{Z} \leq 2] \\
=0.2881+0.4772=0.7653
\end{gathered}
$$

22.If X is a normal variate with mean 30 and s.d 5 , find $\mathrm{P}[|X-30| \leq 5]$.

Answer:

$$
\begin{aligned}
& \mathrm{P}[|X-30| \leq 5]=\mathrm{P}[25 \leq \mathrm{X} \leq 35]=\mathrm{P}[-1 \leq \mathrm{Z} \leq 1] \\
& \quad=2 \mathrm{P}(2 \leq \mathrm{Z} \leq 1)=2(0.3413)=0.6826
\end{aligned}
$$

23. X is normally distributed R.V with mean 12 and SD 4. Find $\mathrm{P}[\mathrm{X} \leq 20]$.

Answer:

$$
\begin{aligned}
\mathrm{P}[\mathrm{X} \leq 20]= & \mathrm{P}[\mathrm{Z} \leq 2] \text { where } \mathrm{Z}=\frac{X-12}{4} \\
& =\mathrm{P}[-\infty \leq \mathrm{Z} 0]+\mathrm{P}[0 \leq \mathrm{Z} \leq 2]
\end{aligned}
$$

$=0.5+0.4772=0.9772$
24.For a certain normal distribution, the first moment about 10 is 40 and the fourth moment about 50 is 48 . Find the mean and s.d of the distribution.

Answer:

$$
\begin{aligned}
& \text { Mean } \mathrm{A}+\mu_{1}^{\prime} \Rightarrow \text { Mean }=10+40=50 \\
& \mu_{1}^{\prime}(\text { aboutthepoint } X=50)=48 \Rightarrow \mu_{4}=48
\end{aligned}
$$

Since mean is $50,3 \sigma^{4}=48$

$$
\sigma=2 .
$$

25.If X is normally distributed with mean 8 and s.d4, find $\mathrm{P}(10 \leq \mathrm{X} \leq 15)$.

Answer:

$$
\begin{aligned}
& \mathrm{P}(10 \leq \mathrm{X} \leq 15)=\mathrm{P}[0.5 \leq \mathrm{X} \leq 1.75] \\
& =\mathrm{P}[0.5 \leq \mathrm{X} \leq 1.75]-\mathrm{P}[0 \leq \mathrm{X} \leq 0.5] \\
& =0.2684
\end{aligned}
$$

26. X is a normal variate with mean 1 and variance $4, \mathrm{Y}$ is another normal variate independent of X with mean 2 and variance 3 , what is the distribution of
$\mathrm{X}+2 \mathrm{Y}$?

Answer:

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}+2 \mathrm{Y}]=\mathrm{E}(\mathrm{X})+2 \mathrm{E}(\mathrm{Y})=1+4=5 \\
& \mathrm{~V}[\mathrm{X}+2 \mathrm{Y}]=\mathrm{V}(\mathrm{X})+4 \mathrm{~V}(\mathrm{Y})=4+4(3)=16 \\
& \mathrm{X}+2 \mathrm{Y} \sim \mathrm{~N}(5,16) \text { by additive property. }
\end{aligned}
$$

