

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Joint distribution,Marginal,Conditional distribution

Un9+-JIT Two Demensional Random Valable * Joent Dectorbutcon * Nauge nal Dectorbutcon * condetional Dectorbutcon * covalence Dectorbutcon

* Functions of Random Valable.

(An Autonomous Institution) Coimbatore - 641 035 DEPARTMENT OF MATHEMATICS Joint distribution, Marginal, Conditional distribution

prsuete Centanuous J. Joint Rustability Density Function Joint Publishifty Mass Function 1 i), f(x, y) ZO 1). P(x1, y1)20 ii). $\sum_{i=1}^{n} \sum_{j=1}^{n} P(x_{i}, y_{j}) = 1$ 2]. To find constant $\int_{\infty}^{\infty} \int_{0}^{\infty} f(x, y) dy dx = 1$ To Find constant: 2] $\frac{3}{2} \stackrel{?}{=} \frac{1}{2} P(x_i, y_j) = 0$ marginal distribution function of X: $P(x) = \sum_{j=1}^{n} P(x_j, y_j)$ 3] $f(x) = \int f(x, y) \, dy$ Mauganal dectabutton function of Y: $P(y) = \sum_{i=1}^{n} P(x_i, y_j)$

4]. Cumulative pretabution:

$$F(X, Y) = P(X \leq X, Y \leq Y)$$

 $i! \int_{-\infty}^{\infty} f(x, y) \, dy \, dx = 1$ 3]. Maugginal dectolocation function of x: Maughal destribution function of y: $f(y) = \int_{-\infty}^{\infty} f(x, y) dx$ Scanned with CamScanner 4]. Cumulative Distribution: $F(\mathbf{X}, \mathbf{y}) = \int_{1}^{\infty} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \, d\mathbf{x}$ CS

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Joint distribution,Marginal,Conditional distribution

Discuete
El. To check x & y are Prodependent:

$$P(i, j) = P(x=i) \cdot P(y=j)$$

El. Conditional Distribution
 $P(x=x_i|y=y_j) = \frac{P(x=x_i, y=y_j)}{P(y=y_j)}$
 $P(y=y_j / x=x_i) = \frac{P(x=x_i, y=y_j)}{P(x=x_i)}$

Contributions 5]. To check x & y are Prodependent $F(x, y) = F(x) \cdot F(y)$ 6]. Conditional Distribution $P = F(x/y) = \frac{F(x, y)}{F(y)}$ $F(y/x) = \frac{F(x, y)}{F(y)}$ $F(y/x) = \frac{F(x, y)}{F(x)}$ F(x) F(y) F(x) F(x) F(x) F(y) F(x) F(x) F(x) F(x) F(x) F(x) F(y) F(x) F(x)F(x)

$$F(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y)$$

Scanned with CamScanne

S

E E		D	An Auto) Coin EPARTMI	onomou: nbatore - ENT OF N	TECHN s Institution - 641 035 MATHEMAT Conditional d	n) TICS	
$\begin{array}{c} 0 \neq (x, \\ 1), P(x \neq 1) \\ 1 \forall 1, P(x \neq 1) \\ \forall 1), P(x \neq 1) \\ \forall 1), Mough$	y). =1) =1/y }9nau +60n	Find ii). (43) ロー ロー ロー スタ	Ply V). HPbut	l'≤3) P(y. Ron · tton	$iii). \leq 3 / x Functle OF x $	$P(x \le 1)$ or of x.	9
Soln. X Y	1	2	3	4	5	6	P(x)
D	0	0	1/32	2/32	2/32	3/32	→ 8/32
1	1/16	1/16	1/8	1/8	1/8	1/8	<u>10</u> 16
æ	1/32	1/32	1/61	1/62	0	2/64	<u>8</u> 64
P(Y)	₹3 32	3 3a	<u>11</u> 64	<u>13</u> 64	<u>6</u> 3&	16	
i). P(x =			i po r Ci si				
Ρ(χ	三1)		2 +-	10	x=1)		
$=\frac{28}{32}=\frac{7}{8}$							
	$\frac{1}{y} P(y \le 3) = P(y=1) + P(y=2) + P(y=3)$						
P(Y≤	£3)	$= P(Y)$ $= \frac{3}{3^2}$				י איב	

cs Scanned with CamScanner

a3 64

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Joint distribution,Marginal,Conditional distribution

$$= \frac{9/32}{28/39}$$

$$= \frac{9}{28}$$
(1) NOW 9¹/m2) dfc/s¹/buttern function of x
x 0 1 2
P(x) 8/32 10/16 8/64
NOW 9¹/m2) dfc/s¹/buttern function of y:
y 1 2 3 4 5 6
P(y) 3/32 3/32 11/64 13/64 5/32 11/64
W1). Condeteonal dfc/s¹/buttern function of x on y=2.
P(x = 0/Y = 9) = $\frac{P(x=0, Y=2)}{P(Y=2)} = 0$
P(x=1/Y=9) = $\frac{P(x=0, Y=2)}{P(Y=2)} = \frac{V_{16}}{3/32} = \frac{2}{3}$
P/x= 2/y=9) = $\frac{P(x=2, Y=9)}{P(Y=2)} = \frac{V_{32}}{3/32} = \frac{1}{3}$
Viii). x & y are godapendant.
 $\Rightarrow P(x=i, y=j) = P(x=i) \cdot P(y=3)$
 $\frac{1}{364} \neq \frac{8}{64} \cdot \frac{11}{64}$
 $\therefore x & y$ are not godapendant.

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Joint distribution,Marginal,Conditional distribution

ix). $P(x+y \le 4)$ $P(x+y \le 4) = P(0, D + P(0, 2) + P(0, 3) + P(0, 4) + P(1, 1) + P(1, 2) + P(1, 3) + P(2, D + P(2, 2))$ $= 0 + 0 + \frac{1}{32} + \frac{2}{32} + \frac{1}{16} + \frac{1}{16} + \frac{1}{8} + \frac{1}{32} + \frac{1}{32}$ $= \frac{1+2+2+2+2+4+1+1}{32}$ $= \frac{13}{32}$ \exists . If the forst PdF of (x, y) is green by P(x, y) = K(2x+3y), x=0, 1, 2, 3. Find au the marginal Probability distribution. Also find the Prob.

dectrobuters of (X+Y) and P(X+Y>3). Soln.

Q(y) = H(ax + 3y)

y ×	0	. 1	Q	P(Y)	
1	ЗK	5K	TK	15 K	
2	6K	8K	IOK	24 K	
3	9K	lik	13K	33 K	
P(x)	18K	24K	30 K	72K	
T	otal pr	uobab919ty	=1		
		T2K:	= 1		
		tr=			
	- 1 C - 1		TO		

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Joint distribution,Marginal,Conditional distribution

P(x+y)=3) = P(x+y=4) + P(x+y=5) $= \frac{21}{72} + \frac{13}{72}$ $= \frac{34}{72}$ $= \frac{34}{7}$ $= \frac$

Soln.

Creven $F(x, y) = \frac{x+2y}{2\pi}$

$$X Y 0 1 & P(x)$$

 $0 0. 9/27 + 4/27 - 6/27$
 $1 1/27 - 3/27 - 5/27 - 9/27$
 $2 2/27 + 4/27 - 6/27 - 12/27$

P(Y) 3/27 9/27 15/27 1

i).
$$P(Y|x=x) = P(x=0, Y=0) = \frac{0}{6/27} = 0$$

 $P(y=0|x=0) = \frac{P(x=0, Y=0)}{P(x=0)} = \frac{0}{6/27} = 0$
 $P(y=1|x=0) = \frac{P(x=0, Y=1)}{P(x=0)} = \frac{2/27}{6/27} = \frac{9}{6}$
 $P(y=2|x=0) = \frac{P(x=0, Y=2)}{P(x=0)} = \frac{4/97}{6} = \frac{4}{6}$

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Joint distribution,Marginal,Conditional distribution

when $x=1$, $P(y=0 x=1) = \frac{P(x=1, y=0)}{P(x=1)} = \frac{Y_{27}}{9_{27}} = \frac{1}{9}$
$P(Y=1/X=1) = \frac{P(X=1, Y=1)}{P(X=1)} = \frac{3/27}{9/27} = \frac{3}{9}$
$P(Y=9/X=1) = \frac{P(X=1, Y=2)}{P(X=1)} = \frac{5/27}{9/27} = \frac{5}{9}$
when $x = 2$, $P(Y=0 x=2) = \frac{P(x=2, Y=0)}{P(x=2)} = \frac{2/27}{12/27} = \frac{2}{12}$
$P[y=1/x=2) = \frac{P(x=2, y=1)}{P(x=2)} = \frac{4/27}{12/27} = \frac{4}{12}$
$P(Y=2/X=2) = \frac{P(X=2, Y=2)}{P(X=2)} = \frac{b/27}{12/27} = \frac{6}{12}$
ii). $P(y x=1)$ $P(y=0 x=1) = \frac{1}{9}$ $P(y=1 x=1) = \frac{3}{9}$ $P(y=2 x=1) = \frac{5}{9}$