Soil Electrical Conductivity

Objectives

- Define: electrical conductivity, cation-exchangecapacity, dS/m, EC_e method, EC_{1:1} method, saline soil, sodic soil, anion, cation, nitrification, denitrification
- Explain the role of electrical conductivity in soil health
- List and describe inherent factors that affect soil electrical conductivity
- Describe the necessity and factors of salinity management
- List and describe problems related to electrical conductivity
- Describe how electrical conductivity affects soil function
- Measure soil electrical conductivity and interpret results

Definitions

Anion: A negatively charged ion. **Cation**: A positively charged ion.

Cation-Exchange Capacity (CEC): Capacity of soil to exchange cations. Soils with high clay or organic matter content have a higher CEC than those soils low in clay and organic matter.

Denitrification: Conversion and loss of nitrate nitrogen to atmosphere in various gas forms, due to lack of oxygen when soil becomes saturated with water.

dS/m: Unit of measurement for electrical conductivity of soil in deciSiemens per meter.

Definitions

EC_e **Method**: Standard accepted laboratory method for soil EC testing using a saturated paste extract.

EC_{1:1} Method: Soil EC testing method using a 1:1 soil-water mixture that must be adjusted for soil texture.

Nitrification: Conversion of ammonium compounds in organic material, or fertilizer into nitrites and nitrates by soil bacteria, making nitrogen available to plants.

Nitrogen Oxides: Family of nitrogen gases that can be generated by human activities and released to the atmosphere.

Definitions

Saline Soil: Soil with a high content of soluble salts and negatively affect soil processes, productivity and overall soil health.

Sodic Soil: Soil with a high content of salt and poor structure. Water infiltration and drainage is prevented.

Soil Electrical Conductivity: A measure of the amount of salts in soil.

Soil Electrical Conductivity

- Soil electrical conductivity affects yields, crop suitability, plant nutrient availability and soil microorganism activity such as emission of greenhouse gases and respiration.
- Excess salts hinder plant growth by affecting the soilwater balance.
- Arid and semi-arid climates naturally have a higher salt content.
- Salinity is influenced by humans through cropping, irrigation and land management practices.

Inherent Factors Affecting Soil EC: Climate

Climate

- Salts are more easily flushed through soil located in areas of high rainfall
- Salts are flushed below the root zone into groundwater or streams
- Salts accumulate in soils found in dry areas

Inherent Factors Affecting Soil EC: Mineral Content

Mineral Content

Salts come from the weathering of minerals and rocks found in soil

Inherent Factors Affecting Soil EC: Texture

Soil Texture

- Clay with high cation-exchange capacities have high electrical conductivity
- Clay with lower cation-exchange capacities have low electrical conductivity
- Salts can't leach through restrictive layers and therefore accumulate

Managing Soil EC: Cropping

- Cropping
 - Leave crop residue to add organic matter and to limit evaporation
 - Low organic matter + poor infiltration + poor drainage + saturated soil + compaction = Increased EC and a decrease in the soil's ability to buffer

Managing Soil EC: Irrigation

- Irrigation
 - The salinity of water affects the salinity of soil
 - Extra water can help flush salts from the soil

Managing Soil EC: Land Use

- Land Use
 - Ensuring that the least amount of compaction and erosion occur improves soil EC

Managing Soil EC: Application of Fertilizer/Manure/Compost

Application of Fertilizer/Manure/Compost

- Monitoring of municipal waste is necessary
- Nitrogen increases salinity

Soil Function and EC

- As EC increases, soil microorganism activity decreases, affecting respiration, residue decomposition, nitrification and denitrification
- Sodic soils have poor soil structure and poor infiltration or drainage as well as increased toxicity
- EC indirectly indicates the amount of water and watersoluble nutrients available for plant uptake