

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade **Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai**

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EET207/ SYNCHRONOUS AND INDUCTION MACHINES

II YEAR / IV SEMESTER

Unit 1 – SYNCHRONOUS GENERATOR

TOPIC 2: EMF EQUATION

1.2.2023

19EET207/SIM/Dr.C.Ramakrishnan/ ASP/EEE

GUESS THE TOPIC NAME...

1.2.2023

19EET207/SIM/Dr.C.Ramakrishnan/ASP/EEE

Synchronous Generators

AC Machines

Synchronous Machines

Synchronous Generator A primary source of electrical energy

Synchronous Motor Used as motors as well as power factor compensators (synchronous condensers)

Asynchronous **Machines** (Induction Machine)

Induction Generator Due to lack of a field separate excitation, these machines are rarely used as generators.

Induction Motor Most widely used electrical motors in both domestic and industrial

applications

19EET207/SIM/Dr.C.Ramakrishnan/

1.2.2023

Stator

· Laminated iron core with slots Steel Housing.

03/18

Stator details • Coils are placed in slots

• Coil end windings are bent to form the armature winding.

Synchronous Generator: Classifications

Types of Synchronous Machine

According to the arrangement of the field armature windings, synchronous and machines may be classified as

- Stationary Armature Rotating Field (Above 5 kVA)
- Stationary Field Rotating Armature (Below 5 kVA)

Advantages of stationary armature - rotating field: i) The High Voltage ac winding and its insulation not subjected to centrifugal forces.(11kV - 33 kV) (BETTER

- - INSULATION)
- member.

- winding.
- vii) Noiseless running is possible.
- viii)Air gap length is uniform
- ix) Better mechanical balancing of rotor

ii) Easier to collect large currents from a stationary

iii) Rotating field makes overall construction simple. iv) Problem of sparking at the slip ring can be avoided. v) Ventilation arrangement for HV can be Improved. vi) The LV(110 V - 220V) dc excitation easily supplied through slip rings and brushes to the rotor field

Synchronous Generator

Stationary Armature - Rotating Field

An alternator has 3 phase winding on the stator and DC field winding on the rotor.

STATOR

Stationary part of the machine. It is built up of **Sheet-Steel Lamination Core (Stampings)** with slots to hold the armature Conductor

1.2.2023

19EET207/SIM/Dr.C.Ramakrishnan/ ASP/EEE

Rotors

ROTOR: There are two types of rotor

i) Salient Pole type {Projected Poles}ii) Non - Salient Pole type {Non - Projected Poles}Smooth Cylindrical Type

DAMPER WINDING

- Pole faces are provided with damper winding
- Damper winding is useful in preventing Hunting
- EMF generated will be sinusoidal
- Copper Bar

Rotors

ROTOR: There are two types of rotor

Smooth cylindrical rotor or TURBO ALTERNATOR field winding used in high speed alternators driven by steam turbines .

Features

Smaller diameter and larger axial length compared to salient pole type machines, of the same rating. Less Windage loss.

Speed 1200 RPM to 3000 RPM. Better Balancing.

Salient-Pole VS Non-salient-Pole

Salient-Pole

Non-Salient-Pole

Working Principle

The rotor of the generator is driven by a prime-mover

A dc current is flowing in the rotor winding which produces a rotating magnetic field within the machine

rotor with field winding

The rotating magnetic field induces a threephase voltage in the stator winding of the generator

1.2.2023

19EET207/SIM/Dr.C.Ramakrishnan/ ASP/EEE

EMF Equation

EMF Equation of an Alternator

Let

- = Flux per pole, Wb Φ
- = Number of Poles Ρ
- = Synchronous Speed in RMP Ns
- Ζ = Total Number of Conductors or coil sides in series

/ Phase

= 2T Ζ

Т = Number of coils or Turns per phase

- = Turns in series per phase Tph = (No. of slots * No. of cond. per slot) / (2 x 3)
- Zph = Conductor per phase
- Zph = Z/3.No. of phase 3
- = Pitch factor or coil span factor Kc or Kp
 - **Distribution factor** Kd Ξ

$$Kp = Cos(\alpha/2)$$

<u>Sin (mβ / 2)</u> Kd = m Sin(β / 2)

Consider single conductor placed in a Slot

If there are Z conductors connected / phase, then Average E.M.F. / Phase = 2f Ø Z volts We know that Z = 2TAverage E.M.F. / Phase = 2f Ø 2T volts $= 4f \emptyset T$ volts

RMS value of E.M.F. / Phase = 1.11 x 4f Ø T volts

RMS value of **E.M.F.** / Phase = $4.44 \text{ f} \notin \text{T}$ volts $\mathbf{EMF}_{\mathbf{RMS}} = 4.44 \mathrm{f} \phi \mathrm{T}$

The above equation is true only if the winding is concentrated in one slot. The winding for each phase under each pole is **Distributed** so we have to consider Kp and Kd

Actual available Voltage / Phase = 4.44 f \emptyset T Kp Kd volts

Star Connected Line Voltage = $\sqrt{3} x$ Phase Voltage 19EET207/SIM/Dr.C.Ramakrishnan/ ASP/EEE

1.2.2023

Form factor = $\frac{\text{RMS Value}}{1}$ Average value

RMS = Form factor x Average Value = 1.11x Average Value

POLE – PITCH

It is the distance between the centres of pole faces of two adjacent poles is called pole pitch.

Total number of Slots in the Armature Pole Pitch = **Number of Poles**

Pole pitch = 180 Phase angle

COIL: A coil consists of two coil sides. Placed in two separate slots

SLOT PITCH: It is the phase angle between two adjustment slots

COIL SPAN OR COIL PITCH

It is the distance between two coil sides of a coil

1.2.2023

19EET207/SIM/Dr.C.Ramakrishnan/ ASP/EEE

Full Pitch and Short Pitch Winding

Full Pitch Winding

If the coil span is equal to pole pitch then the winding is called Full Pitch Winding

1.2.2023

Advantages of Short Chorded winding or Chorded Pitch Winding

- **1.** Copper is saved
- 2. Mechanical strength of the coil is increased
- **3. Induced EMF in improved**

Slot Angle : The angular displacement between any two adjacent poles in electrical degree

Slot angle $(\beta) =$

180 (Number of slots / Pole)

19EET207/SIM/Dr.C.Ramakrishnan/ ASP/EEE

PITCH FACTOR OR COIL SPAN FACTOR OR SHORT CHORDED FACTOR Kp OR Kc

Pitch factor is defined as the ratio EMF induced in the Short pitch winding to the EMF induced in the full pitch winding

Pitch Factor (Kp) = $\frac{\text{EMF induced in the Short pitch winding}}{\text{EMF induced in the Full pitch winding}}$

Pitch Factor (Kp) = $\frac{\text{Vector sum of induced EMF per coil}}{\text{Arithmetic sum of induced EMF per coil}}$

Vector Sum EMF = AB = AC + CB $Kp = \underline{AC + CB}$ AD + DB

 $Kp = \frac{AD \cos (\alpha/2) + DB \cos (\alpha/2)}{AD + DB}$

 $Kp = \frac{2 AD Cos (\alpha/2)}{2 AD}$

DISTRIBUTION FACTOR OR BREATH FACTOR (Kd)

Distribution Factor (Kd) = $\frac{\text{EMF induced in the Distributed winding}}{\text{EMF induced in the Concentrated winding}}$

Distribution Factor (Kd) = $\frac{\text{Vector sum of } \text{EMF per coil}}{\text{Arithmetic sum of EMF per coil}}$

1.2.2023

Distribution Factor (Kd) = $\frac{\text{Vector Sum of emf induced}}{\text{Arithmetic sum of emf induced}}$ **Arithmetic Sum of EMF = AB + BC + CD** From Vector diagram AB = Ax + xB= r Sin ($\beta/2$) + r Sin ($\beta/2$) AB = 2 r Sin ($\beta/2$) Arithmetic Sum of EMF = $3 \times (2 \text{ r Sin} (\beta/2))$ If there are **'m'** slots for distribution, then Arithmetic Sum /phase of the EMF = $m x (2 r Sin (\beta/2))$ **Vector Sum of EMF** AD = AE + ED**Vector Sum of EMF** $AE = ED = r Sin (m\beta/2)$ **Vector Sum of EMF = 2r \times (Sin (m\beta/2))** В $Kd = \frac{2r \ x \ (Sin \ (m\beta/2))}{m \ x \ (2 \ r \ Sin \ (\beta/2))}$ Sin (m $\beta/2$) Kd =**m Sin (B/2**)

1.2.2023

AB = BC = CD = 2 r Sin ($\beta/2$)

SUMMARY

Review on Construction, Working principle of Synchronous Generators, EMF equation

1.2.2023

19EET207/SIM/Dr.C.Ramakrishnan/ASP/EEE

KEEP LEARNING.. Thank u

SEE YOU IN NEXT CLASS

19EET207/SIM/Dr.C.Ramakrishnan/ ASP/EEE

1.2.2023

