Biomedical Image Processing

Relationships Between Pixels

Some Basic Relationships Between Pixels

- Neighbors of a pixel
- $N_{4}(p)$: 4-neighbors of p

$$
(x+1, y),(x-1, y),(x, y+1),(x, y-1)
$$

$N_{D}(p)$: four diagonal neighbors of p $(x+1, y+1),(x+1, y-1),(x-1, y-1)$, $(x-1, y+1)$
$N_{8}(p): 8$-neighbors of p

- Adjacency

- V : The set of gray-level values used to define adjacency
- 4-adjacency: Two pixels p and q with values from V are 4-adjacency if q is in the set $N_{4}(p)$
- 8-adjacency: Two pixels p and q with values from V are 8-adjacency if q is in the set $N_{8}(p)$
m-adjacency (mixed adjacency): Two pixels p and q with values from V are m -adjacency if
$\circ \mathrm{q}$ is in $N_{4}(p)$, or
$\circ \mathrm{q}$ is in $N_{D}(p)$ and the set $N_{4}(p) \bigcap N_{4}(q)$ has no pixels whose values are from V

0	1	1
0	1	0
0	0	1

a b c
FIGURE 2.26 (a) Arrangemenín to the center pixel; (c) m-alijacessing/Dr Karthika A/AP/BME

FIGURE 2.25 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is shown by dashed lines; note the ambiguity). (c) m-adjacency. (d) Two regions that are adjacent if 8-adjecency is used. (e) The circled point is part of the boundary of the 1 -valued pixels only if 8-adjacency between the region and background is used. (f) The inner boundary of the 1-valdaber math, but its outer boundary does.

Processing/Dr Karthika A/AP/BME

- Subset adjacency
- S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel in S2
- Path
- A path from p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where $\left(x_{0}, y_{0}\right)=(x, y),\left(x_{n}, y_{n}\right)=(s, t)$, and pixels $\left(x_{i}, y_{i}\right)$ and $\left(x_{i-1}, y_{i-1}\right)$ are adjacent

- Region
- We call R a region of the image if R is a connected set
- Boundary
- The boundary of a region R is the set of pixels in the region that have one or more neighbors that are not in R
- Edge
- Pixels with derivative values that exceed a preset threshold

o Distance measures

- Euclidean distance

$$
D_{e}(p, q)=\left[(x-s)^{2}+(y-t)^{2}\right]^{\frac{1}{2}}
$$

- City-block distance

$$
D_{4}(p, q)=|(x-s)|+|(y-t)|
$$

- Chessboard distance

$$
D_{8}(p, q)=\max (|(x-s)|,|(y-t)|)
$$

- D_{m} distance: The shortest m-path between the points

An Introduction to the Mathematical Tools Used in Digital Image Processing

- Linear operation
- H is said to be a linear operator if, for any two images f and g and any two scalars a and b,

$$
H(a f+b g)=a H(f)+b H(g)
$$

Arithmetic operations - Addition

a b c
def
19BMB304/Biomedical Image
 averaging $5,10,20,50$, and 100 noisy images, respectively. (Original image courtesy of NASA.)

- Arithmetic operations

- Subtraction

a b c
FIGURE 2.27 (a) Infrared image of 19BMB304/Biomedical Image significant bit of every pixel in (a). (c) Silfeq hce Karthika A/AP/BME, scaled to the range $[0,255]$ for clarity.

- Digital subtraction angiography

> | a | b |
| :--- | :--- |
| c | d |

FIGURE 2.28
Digital
subtraction
angiography.
(a) Mask image.
(b) A live image.
(c) Difference
between (a) and
(b). (d) Enhanced difference image. (Figures (a) and
(b) courtesy of

The Image
Sciences Institute,
University
Medical Center, Utrecht, The
Netherlands.)

- Shading correction

a b c
FIGURE 2.29 Shading correction. (a) Shaded SEM image of a tungsten filament and support, magnified approximately 130 times. (b) The shadige Rat 304 (Biomedicat Image by the reciprocal of (b). (Original image

- Image multiplication

a b c
FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to

- Set operations

19BMB304/Biomedical Image Processing/Dr Karthika A/AP/BME

- Complements

a b c
FIGURE 2.32 Set
operations involving grayscale images.
(a) Original image. (b) Image negative obtained using set complementation. (c) The union of (a) and a constant image.
(Original image courtesy of G.E. Medical Systems.)

- Logical operations

FIGURE 2.33

Illustration of logical operations involving foreground (white) pixels.
Black represents binary 0s and white binary 1s. The dashed lines are shown for reference only. They are not part of the result.

- Singlepixel operations

FIGURE 2.34 Intensity transformation function used to obtain the negative of an 8 -bit image. The dashed arrows show transformation of an arbitrary input intensity value z_{0} into its corresponding output value s_{0}. 19 process304/Biomedical Image 19BMB304/Biomedical Image
rocessing/Dr Karthika A/AP/BME

Neighborhood operations

a b
 c d

FIGURE 2.35
Local averaging using neighborhood processing. The procedure is

The value of this pixel is the average value of the pixels in $S_{x y}$

Image g illustrated in (a) and (b) for a rectangular neighborhood. (c) The aortic angiogram discussed in Section 1.3.2. (d) The result of using Eq. (2.6-21) with $m=n=41$. The images are of size 790×686 pixels.

- Affine transformations

TABLE 2.2
Affine transformations based on Eq. (2.6.-23).

Transformation Name	Affine Matrix, T	Coordinate Equations	Example
Identity	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$x=v$ $y=w$	
Scaling	$\left[\begin{array}{lll}c_{x} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$	$x=c_{x} v$ $y=c_{y} w$	
Rotation	$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{aligned} & x=v \cos \theta-w \sin \theta \\ & y=v \cos \theta+w \sin \theta \end{aligned}$	
Translation	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ t_{x} & t_{y} & 1\end{array}\right]$	$x=v+t_{x}$ $y=w+t_{y}$	
Shear (vertical)	$\left[\begin{array}{lll}1 & 0 & 0 \\ s_{v} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$x=v+s_{v} w$ $y=w$	
Shear (horizontal) 19 Proce	04/Biomedical /Dr Karthika A/	$\begin{gathered} x=\boldsymbol{v} \\ y=s_{h} v+w \end{gathered}$	

- Inverse mapping

a b c d
FIGURE 2.36 (a) A 300 dpi image of the letter T. (b) Image rotated 21° clockwise using nearest neighbor interpolation to assign intensity values to the spatially transformed pixels. (c) Image rotated 21° using bilinear interpolation. (d) Image rotated 21° using bicubic interpolation. The enlarged sections show edge detail for the three interpolation appridis304/Biomedical Image

- Registration

a	b
c	d

FIGURE 2.37
Image registration.
(a) Reference image. (b) Input (geometrically distorted image). Corresponding tie points are shown as small white squares near the corners.
(c) Registered image (note the errors in the borders).
(d) Difference between (a) and (c), showing more registration errors.

FIGURE 2.38
Formation of a vector from corresponding pixel values in three RGB component images.

- Vector operations

- Image transforms

- Fourier transform

a
c d
FIGURE 2.40
(a) Image corrupted by sinusoidal interference. (b) Magnitude of the Fourier transform showing the bursts of energy responsible for the interference. (c) Mask used to eliminate the energy bursts. (d) Result of computing the inverse of the modified Fourier transform. (Original image courtesy of NASA.)

a b c

- Probabilistic methods

FIGURE 2.41
Images exhibiting
(a) low contrast,
(b) medium
contrast, and
(c) high contrast.

