
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AI & ML

PROGRAMMING FOR PROBLEM SOLVING

I YEAR - I SEM

UNIT V – STRUCTURES AND UNIONS

TOPIC 3 – UNIONS

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT 1

2

Introduction

➢ Imagine an e-commerce company that wants to keep track of all products that it wants to sell. At the most

basic level, it would like to keep track of the details of the products it's selling and shipping.

➢ Each product contains defined properties like weight, dimensions and price. Furthermore, to store details of

each product, memory space is required in the computer systems at every warehouse of the company across

the country or the world.

➢ When we consider the size and numbers at which a multinational e-commerce country operates, it becomes

clear that the amount of memory space needed to store the details of each product needs to be optimized

without compromising the integrity of the data.

➢ The concept of unions takes shape to help with situations such as these, where related data needs to be stored

in a memory-optimized way.

➢ As mentioned above, unions are user-defined data type that allows many different data types to be stored in

the same memory region.

➢ This essentially means that one data member can have its data stored in the memory at a time, and changing

the value of any union member affects the data stored in the memory. Let us now look at how unions can be

used in C.
Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

3

Union

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

Union can be defined as a user-defined data type which is a collection of different variables of different data

types in the same memory location.

The union can also be defined as many members, but only one member can contain a value at a particular

point in time.

Union is a user-defined data type, but unlike structures, they share the same memory location.

Syntax:

union union_name
{
union_members;
}instance;

✓ The variable u1 will be allocated memory to

accommodate the largest member of the union.

✓ In this example, it will be allocated 5 bytes.

✓ Only one member can be stored at a time.

✓ We can store either array s or num.

✓ Both do not exist simultaneously.

✓ To calculate the size of the union, the sizeof operator is

used. For the example above, sizeof(u1) will be 5.

4

Accessing Members of the Union

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

Union members can be accessed using the dot operator i.e.,
union_variable.member

If we have a pointer to the union (similar to the pointer to a structure), the members are accessed using the
->operator.
union_pointer->member

Example:
union u *ptr=&u1;

Accessing members:
u1.s ptr->s
u1.num ptr->num

Initializing a Union

Since only one member of the union can be
used at a time, only the first member can be
initialized during declaration.

Example:
union u
{
char s[5];
int num;
};
union u var={“ABC”};

5

Union within a structure

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

A union can be nested within another union or a structure.

Consider the example: Suppose we wish to store information about an employee-id, name, and

type. The type can be “F” for a full-time employee or “P” for a part-time employee. If the type is ‘F’,

store the monthly_salary. If the type is ‘P’, store the hours_worked.

The structure and union declarations will be:

struct employee
{
char name[20];
int id;
char type;
union info
{
int monthly_salary;
int hours_worked;
}details;
}e1,e2;

int main() {
strcpy(e1.name,”ABC”);
e1.id=456;
e1.type=’F’;
e1.details.monthly_salary=1500;

strcpy(e2.name,”LMN”);
e2.id=458;
e2.type=’P’;
e2.details.hours_worked=15;
return 0; }

6

Example of Union

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

Output

7

Explanation

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

• We have taken both union and structure in the given example program to understand how values are stored in

union variables.

• In record 1, First, the memory of union doc1 contains the value 2234 corresponding to the int data type. Next,

when the union member doc1.name has been assigned the value 'Ravi Krishna', the memory location name is

now doc1.name, and the value stored in this location is 'Ravi Krishna' corresponding to the char[] data type.

• Next, the union member doc1.department has been assigned the value 'Radiology'. The memory location has

been changed to doc1.department and the value to 'Radiology', also corresponding to the char[] data type.

Keep in mind unions can hold only one member at a time.

• Therefore, the values in the shared memory are constantly being replaced every time a new member is

assigned a value. Thus when the value in doc1.id is printed, a garbage value appears in the Output as the

shared memory is held by the char[] datatype. Also, the value printed by name and department is the same as

they are of char[] type.

• The values of Record 2 appear correctly at the Output. This is because the union members' values are printed

before their address and values are changed.

8

Applications of Unions

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

➢ Unions are used when mutually exclusive data members have to share the memory in places where

memory space is at a premium, such as embedded systems.

➢ Unions are also used when the program needs direct memory access.

To further understand their applications, let's take up an example:

Imagine a two-wheeler dealership that sells motorbikes and bicycles. The dealership owner would like to

keep track of the inventory of the items in his establishment and store the relevant information in a computer

system. The motorcycle has a price, engine size, and mileage, whereas the bicycle has the properties of color

and price. The property of price is common to both items. The shop owner would now like to store them as

records.

9

Similarities between Structure & Unions

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

1.Both are user-defined data types used to store data of different types as a single unit.

2.Their members can be objects of any type, including other structures and unions or arrays. A member can

also consist of a bit field.

3.Both structures and unions support only assignment = and sizeof operators. The two structures or unions

in the assignment must have the same members and member types.

4.A structure or a union can be passed by value to functions and returned by value by functions. The

argument must have the same type as the function parameter. A structure or union is passed by value just

like a scalar variable as a corresponding parameter.

5.‘.’ operator or selection operator, which has one of the highest precedences, is used for accessing member

variables inside both the user-defined datatypes.

https://www.geeksforgeeks.org/operators-in-c/

10

Difference between Structures & Unions

Unions/Structures & Unions/PPS/Priyanga S/MCA/SNSCT

