
SNS COLLEGE OF5 TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING

UNIT – 4 CALL BY VALUE & CALL BY REFERENCE / RECURSION

Call by value in C

• Call by value in C

• In call by value method, the value of the actual
parameters is copied into the formal parameters.

• In call by value method, we can not modify the
value of the actual parameter by the formal
parameter.

• In call by value, different memory is allocated for
actual and formal parameters since the value of
the actual parameter is copied into the formal
parameter.

2/13

EXAMPLES
#include <stdio.h>

void swap(int , int); //prototype of the function

int main()

{

int a = 10;

int b = 20;

printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and
b in main

swap(a,b);

printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual parameters
do not change by changing the formal parameters in call by value, a = 10, b = 20

}

void swap (int a, int b)

{

int temp;

temp = a;

a=b;

b=temp;

printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a = 20,
b = 10

} 3/13

Output

Before swapping the values in main a = 10, b = 20
After swapping values in function a = 20, b = 10
After swapping values in main a = 10, b = 20

4/13

CALL BY REFERENCE IN C

In call by reference, the address of the variable is passed
into the function call as the actual parameter.

The value of the actual parameters can be modified by
changing the formal parameters since the address of
the actual parameters is passed.

In call by reference, the memory allocation is similar for
both formal parameters and actual parameters. All the
operations in the function are performed on the value
stored at the address of the actual parameters, and the
modified value gets stored at the same address.

5/13

EXAMPLE

#include <stdio.h>
void swap(int *, int *); //prototype of the function
int main()
{

int a = 10;
int b = 20;
printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b

in main
swap(&a,&b);
printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters d

o change in call by reference, a = 10, b = 20
}
void swap (int *a, int *b)
{

int temp;
temp = *a;
*a=*b;
*b=temp;
printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b

= 10
} 6/13

Output

Before swapping the values in main a = 10, b = 20
After swapping values in function a = 20, b = 10
After swapping values in main a = 20, b = 10

7/13

DIFFERENCE

8/13

Recursion

• Recursion is the technique of making a
function call itself. This technique provides a
way to break complicated problems down into
simple problems which are easier to solve.

• Recursion may be a bit difficult to understand.
The best way to figure out how it works is to
experiment with it.

9/13

EXAMPLE

• int sum(int k);

int main() {
int result = sum(10);
printf("%d", result);
return 0;

}

int sum(int k) {
if (k > 0) {

return k + sum(k - 1);
} else {

return 0;
}

}

10/13

Example Explained

• When the sum() function is called, it adds
parameter k to the sum of all numbers smaller
than k and returns the result. When k
becomes 0, the function just returns 0. When
running, the program follows these steps:

11/13

Example Explained

• 10 + sum(9)
10 + (9 + sum(8))
10 + (9 + (8 + sum(7)))
...
10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + sum(0)
10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0

• Since the function does not call itself when k is
0, the program stops there and returns the
result

12/13

THANK YOU

