

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution

Coimbatore – 35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AI & ML

PROGRAMMING FOR PROBLEM SOLVING

I YEAR - I SEM

UNIT IV – FUNCTIONS AND POINTERS

TOPIC 7 – POINTER ARRAYS

INTRODUCTION

➢ Pointers and Array representations are very much related to each other and can be

interchangeably used in the right context.

➢ Arrays can be single or multidimensional and are stored in contiguous memory blocks

in our system, so it is easy for pointers to get associated with the arrays.

➢ An array name is generally treated as a pointer to the first element of the array and if

we store the base address of the array in another pointer variable, then we can easily

manipulate the array using pointer arithmetic in a C Program.

In C Language, we can declare an integer array using the below statement:

The above statement will allocate 5 integer blocks and will occupy a memory of 20 Bytes in

the system (5 * 4 = 20, 5 is size of the array and 4 bytes is the space occupied by an integer

block, total = 20).

Below is the representation of how the array is stored in the system's memory. Let the base

address allocated by the system to the array is 300.

Note: All the consecutive array elements are at a distance of 4 bytes from each other as an int

block occupies 4 bytes of memory in the system (64-bit Architecture). Also, each array element

contains a garbage value because we have not initialized the array yet.

RELATIONSHIP BETWEEN POINTERS AND ARRAYS IN C

Let an array representation as shown below

With respect to the concept of the pointer, let us see some important points related to arrays in

general:

• 'arr' serves two purposes here, first it is the name of the array and second, arr itself

represents the base address of the array i.e. 300 in the above case, if we print the value

in arr then it will print the address of the first element in the array.

• As the array name arr itself represents the base address of the array, then by default arr

acts as a pointer to the first element of the array.

• arr is the same as &arr and &arr[0] in C Language.

• If we use dereferencing operator (*) on any of the above representations of array

address, we will get the value of the very first element of the array.

Output address will be different at every run.

We can see that arr, &arr and &arr[0] are printing the same addresses and values in the output

window. So, it is clear from the above program and output that arr, &arr and &arr[0] represent

the same address in the system's memory.

Syntax Representing Array in Terms of Pointers in C

In a C Program, we denote array elements as arr[i], where i is the index value. Below is a

similar syntax in terms of pointers of how we can represent the array elements using the

dereferencing operator (*) on the array name i.e. using the pointers property of the array.

• * is a dereferencing operator used to extract the value from the address (arr + i).

• *(arr + i) is the same as arr[i] in a C Program.

• arr represents the array name and i represents the index value.

Explanation:

• We have declared and initialized an integer array arr, array representation:

• (arr + i) represents the address of the value at index i, so *(arr + i) will give the value

at ith index (address(arr + i) = address(arr[i])), it is used to print the addresses of the

array elements as the value of i changes from 0-4.

• * is a dereferencing operator used for printing the value at the provided address. *(arr

+ i) will print the values of the array at consecutive addresses as the value of i changes

from 0-4.

Note: From the above example we can conclude that, &arr[0] is equal to arr and arr[0] is equal

to *arr. Similarly,

• &arr[1] is equal to (arr + 1) and arr[1] is equal to *(arr + 1).

• &arr[2] is equal to (arr + 2) and arr[2] is equal to *(arr + 2) and so on.

• ...

• Finally, we can write the above expressions in a fundamental form:

• &arr[i] is equal to (arr + i) and arr[i] is equal to *(arr + i).

Pointer to Array in C

In a pointer to an array, we just have to store the base address of the array in the pointer variable.

We know in the arrays that the base address of an array can be represented in three forms,

In all the above cases, ptr will store the base address of the array. Now, Let's see an example

where we are printing array elements using a pointer to array. We will add consecutive integer

values to the pointer ptr using a for loop and with the help of addition arithmetic we are going

to print the array elements.

Explanation:

• We have declared and initialized an integer array arr, array representation:

• (ptr + i) will give the address of the array elements as the value of i changes from 0-4

as address(ptr + i) = address(arr[i]).

• * is the dereferencing operator used for printing the value at the provided address. *(ptr

+ i) will print the values of the array as the value of i changes.

An arithmetic operation on a pointer means that we are modifying the address value of the

pointer and not the value pointed by the pointer.

POINTER TO MULTIDIMENSIONAL ARRAYS IN C

Multi-dimensional arrays are defined as an array of arrays. 2-D arrays consist of 1-D arrays,

while 3-D arrays consist of 2-D arrays as their elements.

POINTER TO 2D ARRAYS

A 2-D array is an array of arrays, we can understand 2-D array as they are made up of n 1-D

arrays stored in a linear manner in the memory. 2-D arrays can also be represented in a matrix

form.

In the matrix form, there are rows and columns, so let's look at the representation of a 2-D array

matrix below where i represents the row number and j represents the column number, arr is the

array name.

Here, array contains 3 1-D arrays as its element, so array name arr acts as a pointer to the 1st 1-

D array i.e. arr[0] and not to the first element of the array i.e. arr[0][0]. As we know our system's

memory is organized in a sequential manner so it is not possible to store a 2-D array in rows

and columns fashion, they are just used for the logical representation of 2-D arrays.

In the above representation, we have combined 3 1-D arrays that are stored in the memory to

make a 2-D array, herearr[0],arr[1], arr[2] represents the base address of the respective arrays.

So, arr[0], arr[1] and arr[2] act as a pointer to these arrays and we can access the 2-D arrays

using the above array pointers.

Syntax for representing 2-D array elements:

((arr + i) + j) represents the element of an array arr at the index value of ith row and jth column;

it is equivalent to the regular representation of 2-D array elements as arr[i][j].

POINTER TO 3D ARRAYS IN C

When the elements of an array are 2-D arrays, then the array formed is known as 3-Dimensional

Array. 3-Dimensional arrays can also be known as array of matrices.

Syntax for Representing 3-D array elements:

ARRAY OF POINTERS IN C

As we know, arrays are collections of elements stored in contiguous memory locations. An

array of pointers is similar to any other array in C Language. It is an array which contains

numerous pointer variables and these pointer variables can store address values of some other

variables having the same data type.

Syntax to declare a normal array

Example:

Syntax to declare a pointer array:

Example:

We are using * operator to define that the ptr array is an array of pointers.

An application of an array of pointers is that it becomes easy to store strings in a char pointer

array and it also reduces the memory consumption.

DIFFERENCE BETWEEN POINTER AND ARRAYS

CONCLUSION

• Array name generally acts as a pointer to the array and contains the starting address

of the array.

• Array elements can be accessed and manipulated using a pointer containing the starting

address of the array.

• Syntax for representation of 2-D arrays elements in terms of pointers is *(*(arr + i) + j)

(arr[i][j]) and for 3-D arrays elements is *(*(*(arr + i) + j) + k) (arr[i][j][k]).

• Array of pointers are used to store multiple address values and are very useful in case

of storing various string values.

