
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AI & ML

PROGRAMMING FOR PROBLEM SOLVING

I YEAR - I SEM

UNIT IV – FUNCTIONS AND POINTERS

TOPIC 4 – RECURSION FUNCTION

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT 1

2

Introduction

➢ Recursion is the process which comes into existence when a function calls a copy of itself to work

on a smaller problem.

➢ Any function which calls itself is called recursive function, and such function calls are called

recursive calls.

➢ Recursion involves several numbers of recursive calls. However, it is important to impose a

termination condition of recursion.

➢ Recursion cannot be applied to all the problem, but it is more useful for the tasks that can be defined

in terms of similar subtasks.

➢ For Example, recursion may be applied to sorting, searching, and traversal problems.

➢ Generally, iterative solutions are more efficient than recursion since function call is always overhead.

➢ Any problem that can be solved recursively, can also be solved iteratively. However, some problems

are best suited to be solved by the recursion, for example, tower of Hanoi, Fibonacci series, factorial

finding, etc.

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT

3

Recursive Function

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT

✓ A recursive function performs the tasks by dividing it into the subtasks.

✓ There is a termination condition defined in the function which is satisfied by some specific subtask.

✓ After this, the recursion stops and the final result is returned from the function.

✓ The case at which the function doesn't recur is called the base case whereas the instances where

the function keeps calling itself to perform a subtask, is called the recursive case.

✓ All the recursive functions can be written using this format.

void recursive_fun() //recursive function
{

Base_case; // Stopping Condition
recursive_fun(); //recursive call

}
int main()
{

recursive_fun(); //function call
}

Basic Syntax

4

Flowchart of Recursion

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT

In the following image, there is a recursive function inside which there is a

recursive call that calls the recursive function until the condition of the problem

is true. If the condition gets satisfied, then the condition is false, and the program

control goes for the remaining statements and stops the program.

How does Recursion Work?

✓ The recursive function or method has two main parts in its body, i.e., the base case and the recursive case.

✓ While the recursive method is executed, first, the base case is checked by the program.

✓ If it turns out true, the function returns and quits; otherwise, the recursive case is executed.

✓ Inside the recursive case, we have a recursive call that calls the function inside which it is present.

5

Types of Recursion
There are two types of recursion in the C language.

Direct Recursion

Indirect Recursion

1. Direct Recursion in C

Direct recursion in C occurs when a function calls itself directly from inside. Such functions are

also called direct recursive functions.

Following is the structure of direct recursion.

function_01()

{

//some code

function_01();

//some code

}

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT

6

Example – Fibonacci Series
#include<stdio.h>
int fibonacci_01(int i)
{
if (i == 0)
{
return 0;

}
if (i == 1)
{
return 1;

}
return fibonacci_01(i - 1) + fibonacci_01(i - 2);

}
int main()
{

int i, n;
printf("Enter a digit for fibonacci series: ");
scanf("%d", & n);
for (i = 0; i < n; i++)
{
printf(" %d ", fibonacci_01(i));

}
return 0;

}

1. In the given C program, we have declared a

function named fibonacci_01().

2. It takes an integer i as input and returns the ith

element of the Fibonacci series.

3. At first, the main() function will be executed

where we have taken two variables i and n.

4. We will take input from the user that will be

stored in n, and the for loop will execute till n

iteration where with each iteration, it will pass

the parameter to fibonacci_01() function where

the logic for the Fibonacci series is written.

5. Now inside fibonacci_01() function, we have

nested if-else.

6. If input = 0, it will return 0, and if the input = 1,

it will return 1. These are the base cases for the

Fibonacci function.

7. If the value of i is greater than 1, then

fibonacci(i) will return fibonacci_01 (i - 1) +

fibonacci_01 (i -2) recursively, and this recursion

will be computed till the base condition.

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT

7

Indirect Recursion

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT

Indirect recursion in C occurs when a function calls another function and if this function calls the first

function again. Such functions are also called indirect recursive functions.

Following is the structure of indirect recursion.

function_01()

{

//some code

function_02();

}

function_02()

{

//some code

function_01();

}

In the indirect recursion structure the function_01() executes

and calls function_02(). After calling now, function_02

executes where inside it there is a call for function_01, which

is the first calling function.

8

Example
#include<stdio.h>
void odd();
void even();
int n=1;
void odd()
{
if(n <= 10)
{
printf("%d ", n+1);
n++;
even();

}
return;

}
void even()
{
if(n <= 10)
{
printf("%d ", n-1);
n++;
odd();

}
return;

}
int main()
{
odd();

}

1. In this C program, we have functions named odd() and even().

2. A variable n is assigned with a value 1 as we have to take values from 1 to 10.

3. Now inside the odd() function, we have an if statement which states that if the value of n is less than or

equals 10 add 1 to it and print.

4. Then the value of n is incremented by 1(it becomes even), and the even() function is called.

5. Now inside the even() function, we again have an if statement which states that if the value of n is less

than or equals 10 subtract 1 from it and print.

6. Then the value of n is incremented by 1(it becomes odd, and the odd() function is called.

7. This indirect recursion goes on until the if condition inside both the functions becomes unsatisfied.

8. At last, we have the main() function inside, which we call the odd() function as the first number handle

is 1, which is odd.

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT

Here is a C program to print numbers from 1 to 10 in such a manner that when an odd no is encountered,

we will print that number plus 1.

When an even number is encountered, we would print that number minus 1 and will increment the current

number at every step.

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT 9

Difference between Recursion & Iteration

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT 10

Advantages of Recursion

✓ The code becomes shorter and reduces the unnecessary calling to functions.

✓ Useful for solving formula-based problems and complex algorithms.

✓ Useful in Graph and Tree traversal as they are inherently recursive.

✓ Recursion helps to divide the problem into sub-problems and then solve them, essentially

divide and conquer.

Disadvantages of Recursion

❑ The code becomes hard to understand and analyze.

❑ A lot of memory is used to hold the copies of recursive functions in the memory.

❑ Time and Space complexity is increased.

❑ Recursion is generally slower than iteration.

Recursion/Functions & Pointers/PPS/Priyanga S/MCA/SNSCT 11

Conclusion

➢ There are two types of recursion in the C language.

➢ The first is Direct recursion and Indirect recursion.

➢ The Direct recursion in C occurs when a function calls itself directly from inside.

➢ Indirect recursion occurs when a function calls another function, and then that function calls the first

function again.

➢ The function call to itself is a recursive call, and the function will become a recursive function.

➢ The stack is maintained in the memory to store the recursive calls and all the variables with the value

passed in them.

