

The Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to $j o b j$ is $C[i, j]$. Find an assignment that minimizes the total cost.

Job 0 Job 1 Job 2 Job 3

Person 0	9		2	
Person 1	6	4	3	7
Person 2	5	8	1	8
Person 3	7	6	9	4

Algorithmic Plan:
Generate all legitimate assignments
Compute costs
Select cheapest

Assignment Problem: Exhaustive Search
 9278

$C=\begin{array}{ccccc} & 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 & \\ 7 & 6 & 9 & 4\end{array}$

Assignment (col.\#s)
Total Cost
1, 2, 3, 4
1, 2, 4, 3
1, 3, 2, 4
1, 3, 4, 2
$9+3+8+6=26$
1, 4, 2, 3
$9+7+8+9=33$
1, 4, 3, 2
$9+7+1+6=23$
(For this instance, the optimal assignment can be easily found by exploiting the specific features of the numbers given. It is:

Assignment Problem: Exhaustive Search
 9278

$C=\begin{array}{ccccc} & 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 & \\ 7 & 6 & 9 & 4\end{array}$

Assignment (col.\#s)
Total Cost
1, 2, 3, 4
1, 2, 4, 3
1, 3, 2, 4
1, 3, 4, 2
$9+3+8+6=26$
1, 4, 2, 3
$9+7+8+9=33$
1, 4, 3, 2
$9+7+1+6=23$
(For this instance, the optimal assignment can be easily found by exploiting the specific features of the numbers given. It is: $(2,1,3,4)$

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to $j o b j$ is $C[i, j]$. Find an assignment that minimizes the total cost.

$$
\text { Job } 0 \text { Job } 1 \text { Job } 2 \text { Job } 3
$$

Person 0	2		7	
Person 1	6	4	3	7
Person 2	5	8	1	8
Person 3	7	6	9	4

Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

How many assignments are there?
Describe sol'n using cost matrix:

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to $j o b j$ is $C[i, j]$. Find an assignment that minimizes the total cost.

Job 0 Job 1 Job 2 Job 3

Person 0	9		2	
Person 1	6	4	3	7
Person 2	5	8	1	8
Person 3	7	6	9	4

Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

How many assignments are there: permutations of $1 . . n=n$!
Sol'n using cost matrix: select one from each row/col. Min sum.

Final Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- In some cases, there are much better alternatives!
- Euler circuits
- shortest paths
- minimum spanning tree
- assignment problem
- In many cases, exhaustive search or its variation is the only known way to get exact solution

Brute Force: Review

- Based on problem statement and definitions
- Typically slow, but may be only known algorithm
- Useful to consider first
- better algorithm frequently known
- Examples:
- Sorting and Searching
- Exhaustive Search:
- Pattern Match, TSP, Knapsack, Assignment,
- Graph (DFS, BFS)

Brute-Force Strengths and Weaknesses

- Strengths
- Wide applicability
- Simplicity
- Yields reasonable algorithms for some important problems (e.g., matrix multiply, sorting, searching, string matching)
- Algorithm may be good enough for small problem
- Improvement may be too hard
- Provides yardstick for comparison
- Weaknesses
- Rarely yields efficient algorithms
- Some brute-force algorithms are unacceptably slow
- Not as constructive as some other design techniques

