
SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19ITB201 - DESIGN AND ANALYSIS OF ALGORITHMS

CLOSSEST PAIR PROBLEM :

We are given an array of n points in the plane, and the problem is to find out the

closest pair of points in the array. This problem arises in a number of

applications. For example, in air-traffic control, you may want to monitor planes

that come too close together, since this may indicate a possible collision. Recall

the following formula for distance between two points p and q.

The Brute force solution is O(n^2), compute the distance between each pair and

return the smallest. We can calculate the smallest distance in O(nLogn) time

using Divide and Conquer strategy. In this post, a O(n x (Logn)^2) approach is

discussed. We will be discussing a O(nLogn) approach in a separate post.

Algorithm

Following are the detailed steps of a O(n (Logn)^2) algorithm.

Input: An array of n points P[]

Output: The smallest distance between two points in the given array.

As a pre-processing step, the input array is sorted according to x coordinates.

1) Find the middle point in the sorted array, we can take P[n/2] as middle point.

2) Divide the given array in two halves. The first subarray contains points from

P[0] to P[n/2]. The second subarray contains points from P[n/2+1] to P[n-1].

3) Recursively find the smallest distances in both subarrays. Let the distances

be dl and dr. Find the minimum of dl and dr. Let the minimum be d.

.

4) Sort the array strip[] according to y coordinates. This step is O(nLogn). It
can be optimized to O(n) by recursively sorting and merging.

5) Find the smallest distance in strip[]. This is tricky. From the first look, it
seems to be a O(n^2) step, but it is actually O(n). It can be proved
geometrically that for every point in the strip, we only need to check at most 7
points after it (note that strip is sorted according to Y coordinate).

6) Finally return the minimum of d and distance calculated in the above step
(step 6)

7) From the above 3 steps, we have an upper bound d of minimum distance.

Now we need to consider the pairs such that one point in pair is from the left

half and the other is from the right half. Consider the vertical line passing

through P[n/2] and find all points whose x coordinate is closer than d to the

middle vertical line. Build an array strip[] of all such points.

