

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-II

1. What is deep neural networks?

 A deep neural network (DNN) is an ANN with multiple hidden layers between the

input and output layers. Similar to shallow ANNs, DNNs can model complex non-

linear relationships.

 The main purpose of a neural network is to receive a set of inputs, perform

progressively complex calculations on them, and give output to solve real world

problems like classification. We restrict ourselves to feed forward neural networks.

 We have an input, an output, and a flow of sequential data in a deep network.

Neural networks are widely used in supervised learning and reinforcement learning

problems. These networks are based on a set of layers connected to each other.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 In deep learning, the number of hidden layers, mostly non-linear, can be large; say

about 1000 layers.DL models produce much better results than normal ML

networks.

 We mostly use the gradient descent method for optimizing the network and

minimising the loss function.

 We can use the Imagenet, a repository of millions of digital images to classify a

dataset into categories like cats and dogs. DL nets are increasingly used for

dynamic images apart from static ones and for time series and text analysis.

 Training the data sets forms an important part of Deep Learning models. In

addition, Backpropagation is the main algorithm in training DL models.DL deals

with training large neural networks with complex input output transformations.

 One example of DL is the mapping of a photo to the name of the person(s) in photo

as they do on social networks and describing a picture with a phrase is another

recent application of DL.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 Neural networks are functions that have inputs like x1,x2,x3…that are transformed

to outputs like z1,z2,z3 and so on in two (shallow networks) or several intermediate

operations also called layers (deep networks).

 The weights and biases change from layer to layer. ‘w’ and ‘v’ are the weights or

synapses of layers of the neural networks. The best use case of deep learning is the

supervised learning problem.Here,we have large set of data inputs with a desired

set of outputs.

 Here we apply back propagation algorithm to get correct output prediction.The

most basic data set of deep learning is the MNIST, a dataset of handwritten digits.

We can train deep a Convolutional Neural Network with Keras to classify images

of handwritten digits from this dataset.

 We can train deep a Convolutional Neural Network with Keras to classify images

of handwritten digits from this dataset.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 The firing or activation of a neural net classifier produces a score. For example,to

classify patients as sick and healthy,we consider parameters such as height, weight

and body temperature, blood pressure etc.

 A high score means patient is sick and a low score means he is healthy. Each node

in output and hidden layers has its own classifiers. The input layer takes inputs and

passes on its scores to the next hidden layer for further activation and this goes on

till the output is reached.

 This progress from input to output from left to right in the forward direction is

called forward propagation.

 Credit assignment path (CAP) in a neural network is the series of transformations

starting from the input to the output. CAPs elaborate probable causal connections

between the input and the output.

 CAP depth for a given feed forward neural network or the CAP depth is the number

of hidden layers plus one as the output layer is included. For recurrent neural

networks, where a signal may propagate through a layer several times, the CAP

depth can be potentially limitless.

.

2. What is gradient descent?

 Gradient descent is an optimization algorithm which is commonly-used to train

machine learning models and neural networks. Training data helps these models

learn over time, and the cost function within gradient descent specifically acts as a

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

barometer, gauging its accuracy with each iteration of parameter updates. Until the

function is close to or equal to zero, the model will continue to adjust its parameters

to yield the smallest possible error. Once machine learning models are optimized

for accuracy, they can be powerful tools for artificial intelligence (AI) and

computer science applications.

 Before we dive into gradient descent, it may help to review some concepts from

linear regression. You may recall the following formula for the slope of a line,

which is y = mx + b, where m represents the slope and b is the intercept on the y-

axis.

 You may also recall plotting a scatterplot in statistics and finding the line of best

fit, which required calculating the error between the actual output and the predicted

output (y-hat) using the mean squared error formula. The gradient descent

algorithm behaves similarly, but it is based on a convex function.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 The starting point is just an arbitrary point for us to evaluate the performance. From

that starting point, we will find the derivative (or slope), and from there, we can

use a tangent line to observe the steepness of the slope. The slope will inform the

updates to the parameters—i.e. the weights and bias. The slope at the starting point

will be steeper, but as new parameters are generated, the steepness should gradually

reduce until it reaches the lowest point on the curve, known as the point of

convergence.

 Similar to finding the line of best fit in linear regression, the goal of gradient

descent is to minimize the cost function, or the error between predicted and actual

In order to do this, it requires two data points—a direction and a learning rate.

These factors determine the partial derivative calculations of future iterations,

allowing it to gradually arrive at the local or global minimum (i.e. point of

convergence).

 Learning rate (also referred to as step size or the alpha) is the size of the steps that

are taken to reach the minimum. This is typically a small value, and it is evaluated

and updated based on the behavior of the cost function. High learning rates result

in larger steps but risks overshooting the minimum. Conversely, a low learning rate

has small step sizes. While it has the advantage of more precision, the number of

iterations compromises overall efficiency as this takes more time and computations

to reach the minimum.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 The cost (or loss) function measures the difference, or error, between actual y and

predicted y at its current position. This improves the machine learning model's

efficacy by providing feedback to the model so that it can adjust the parameters to

minimize the error and find the local or global minimum. It continuously iterates,

moving along the direction of steepest descent (or the negative gradient) until the

cost function is close to or at zero. At this point, the model will stop learning.

Additionally, while the terms, cost function and loss function, are considered

synonymous, there is a slight difference between them. It’s worth noting that a loss

function refers to the error of one training example, while a cost function calculates

the average error across an entire training set.

 Types of Gradient Descent There are three types of gradient descent learning

algorithms: batch gradient descent, stochastic gradient descent and mini-batch

gradient descent.

 Batch gradient descent sums the error for each point in a training set, updating the

model only after all training examples have been evaluated. This process referred

to as a training epoch.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 While this batching provides computation efficiency, it can still have a long

processing time for large training datasets as it still needs to store all of the data

into memory. Batch gradient descent also usually produces a stable error gradient

and convergence, but sometimes that convergence point isn’t the most ideal,

finding the local minimum versus the global one.

 Stochastic gradient descent (SGD) runs a training epoch for each example within

the dataset and it updates each training example's parameters one at a time. Since

you only need to hold one training example, they are easier to store in memory.

While these frequent updates can offer more detail and speed, it can result in losses

in computational efficiency when compared to batch gradient descent. Its frequent

updates can result in noisy gradients, but this can also be helpful in escaping the

local minimum and finding the global one.

 Mini-batch gradient descent combines concepts from both batch gradient descent

and stochastic gradient descent. It splits the training dataset into small batch sizes

and performs updates on each of those batches. This approach strikes a balance

between the computational efficiency of batch gradient descent

Challenges with the Gradient Descent

 Although we know Gradient Descent is one of the most popular methods for

optimization problems, it still also has some challenges. There are a few challenges

as follows:

1. Local Minima and Saddle Point

2. Vanishing and Exploding Gradient

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

3. Differentiation Algorithms

Automatic Differentiation

 Deep learning community has been outside the CS community dealing with

automatic differentiation

 The back-propagation algorithm is only one approach to automatic differentiation

 It is a special case of a broader class of techniques called reverse mode

accumulation

Computational Complexity

 In general, determining the order of evaluation that results in the lowest

computational cost is a difficult problem Finding the optimal sequence of

operations to compute the gradient is NP-complete (Naumann, 2008) in the sense

that it may require simplifying algebraic expressions into their least expensive

form

 Algebraic substitution

 If pi are probabilities and zi are unnormalized log probabilities. Suppose where

we build the softmax function out of exponentiation, summation and division,

and construct a cross-entropy loss J = −Σi pi log qi. A human mathematician can

observe that the derivative of J wrt zi takes a simple form: qi –pi whereas

backprop propagates gradients through log and exp operations through the

original graph .

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 Theano performs some algebraic substitution to improve over graph proposed by

pure backpropagation. Future differentiation technology Backprop is not the

only- or optimal-way of computing the gradient, but a practical method for deep

learning

 In the future, differentiation technology for deep networks may improve with

advances in the broader field of automatic differentiation

4. What is Vanishing Gradient ?

 The sigmoid function is one of the most popular activations functions used for

developing deep neural networks. The use of sigmoid function restricted the

training of deep neural networks because it caused the vanishing gradient

problem. This caused the neural network to learn at a slower pace or in some

cases no learning at all. This blog post aims to describe the vanishing gradient

problem and explain how use of the sigmoid function resulted in it.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Sigmoid function

 Sigmoid functions are used frequently in neural networks to activate neurons. It

is a logarithmic function with a characteristic S shape. The output value of the

function is between 0 and 1. The sigmoid function is used for activating the output

layers in binary classification problems.

Vanishing Gradient Problem, Explained

 Our knowledge of how neural networks perform forward and backpropagation is

essential to understanding the vanishing gradient problem.

Forward Propagation

 The basic structure of a neural network is an input layer, one or more hidden

layers, and a single output layer. The weights of the network are randomly

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

initialized during forward propagation. The input features are multiplied by the

corresponding weights at each node of the hidden layer, and a bias is added to the

net sum at each node. This value is then transformed into the output of the node

using an activation function. To generate the output of the neural network, the

hidden layer output is multiplied by the weights plus bias values, and the total is

transformed using another activation function. This will be the predicted value of

the neural network for a given input value.

Back Propagation

 As the network generates an output, the loss function(C) indicates how well it

predicted the output. The network performs back propagation to minimize the

loss. A back propagation method minimizes the loss function by adjusting the

weights and biases of the neural network. In this method, the gradient of the loss

function is calculated with respect to each weight in the network.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 In back propagation, the new weight(wnew) of a node is calculated using the old

weight(wold) and product of the learning rate(ƞ) and gradient of the loss function

Vanishing Gradient Problem, Explained.

 With the chain rule of partial derivatives, we can represent gradient of the loss

function as a product of gradients of all the activation functions of the nodes with

respect to their weights.Therefore, the updated weights of nodes in the network

depend on the gradients of the activation functions of each node.

 For the nodes with sigmoid activation functions, we know that the partial

derivative of the sigmoid function reaches a maximum value of 0.25. When there

are more layers in the network, the value of the product of derivative decreases

until at some point the partial derivative of the loss function approaches a value

close to zero, and the partial derivative vanishes. We call this the vanishing

gradient problem.

 With shallow networks, sigmoid function can be used as the small value of

gradient does not become an issue. When it comes to deep networks, the

vanishing gradient could have a significant impact on performance. The weights

of the network remain unchanged as the derivative vanishes. During back

propagation, a neural network learns by updating its weights and biases to reduce

the loss function. In a network with vanishing gradient, the weights cannot be

updated, so the network cannot learn. The performance of the network will

decrease as a result.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Method to overcome the problem

 The vanishing gradient problem is caused by the derivative of the activation

function used to create the neural network. The simplest solution to the problem

is to replace the activation function of the network. Instead of sigmoid, use an

activation function such as ReLU.

 Rectified Linear Units (ReLU) are activation functions that generate a positive

linear output when they are applied to positive input values. If the input is

negative, the function will return zero. The derivative of a ReLU function is

defined as 1 for inputs that are greater than zero and 0 for inputs that are negative.

The graph shared below indicates the derivative of a ReLU function

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 If the ReLU function is used for activation in a neural network in place of a

sigmoid function, the value of the partial derivative of the loss function will be

having values of 0 or 1 which prevents the gradient from vanishing. The use of

ReLU function thus prevents the gradient from vanishing. The problem with the

use of ReLU is when the gradient has a value of 0. In such cases, the node is

considered as a dead node since the old and new values of the weights remain the

same. This situation can be avoided by the use of a leaky ReLU function which

prevents the gradient from falling to the zero value.

 Another technique to avoid the vanishing gradient problem is weight

initialization. This is the process of assigning initial values to the weights in the

neural network so that during back propagation, the weights never vanish.

 In conclusion, the vanishing gradient problem arises from the nature of the partial

derivative of the activation function used to create the neural network. The

problem can bevworse in deep neural networks using Sigmoid activation

function. It can be significantly reduced by using activation functions like ReLU

and leaky ReLU

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

5. What is rectified linear activation function?

 In a neural network, the activation function is responsible for transforming the

summed weighted input from the node into the activation of the node or output

for that input.

 The rectified linear activation function or ReLU for short is a piecewise linear

function that will output the input directly if it is positive, otherwise, it will output

zero. It has become the default activation function for many types of neural

networks because a model that uses it is easier to train and often achieves better

performance.

 The sigmoid and hyperbolic tangent activation functions cannot be used in

networks with many layers due to the vanishing gradient problem.

 The rectified linear activation function overcomes the vanishing gradient

problem, allowing models to learn faster and perform better.

 The rectified linear activation is the default activation when developing

multilayer Perceptron and convolutional neural networks.

Rectified Linear Activation Function

 In order to use stochastic gradient descent with backpropagation of errors to train

deep neural networks, an activation function is needed that looks and acts like a

linear function, but is, in fact, a nonlinear function allowing complex

relationships in the data to be learned.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 The function must also provide more sensitivity to the activation sum input and

avoid easy saturation.

 The solution is to use the rectified linear activation function, or ReL for short. A

node or unit that implements this activation function is referred to as a rectified

linear activation unit, or ReLU for short. Often, networks that use the rectifier

function for the hidden layers are referred to as rectified networks.

 Adoption of ReLU may easily be considered one of the few milestones in the

deep learning revolution, e.g. the techniques that now permit the routine

development of very deep neural networks.

 The rectified linear activation function is a simple calculation that returns the

value provided as input directly, or the value 0.0 if the input is 0.0 or less.

 We can describe this using a simple if-statement:

if input > 0:

 return input

else:

return 0

 We can describe this function g() mathematically using the max() function over

the set of 0.0 and the input z; for example:

g(z) = max{0, z}

 The function is linear for values greater than zero, meaning it has a lot of the

desirable properties of a linear activation function when training a neural network

using backpropagation. Yet, it is a nonlinear function as negative values are

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

always output as zero, Because the rectified function is linear for half of the input

domain and nonlinear for the other half, it is referred to as a piecewise linear

function or a hinge function.

 The derivative of the rectified linear function is also easy to calculate. Recall that

the derivative of the activation function is required when updating the weights of

a node as part of the backpropagation of error.

 The derivative of the function is the slope. The slope for negative values is 0.0

and the slope for positive values is 1.0.

Advantages of the Rectified Linear Activation Function

 The rectified linear activation function has rapidly become the default activation

function when developing most types of neural networks.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

6. Avoid Local Minima in Gradient Descent?

 We’ve learned how to improve a model by measuring its performance, updating

the weights, which are dependent on the change of the error on the change of the

weights. If this sounds complicated, let me show you the formulation:

 Above, in order to update the weights, or to have new weights which help a neural

network to make better predictions, we need to calculate the gradient, ratio of error

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

change to the weight change. Cool. But what if we could not reach out to the global

minima which will reduce the error the most? We know that we need to use the

direction to reach the lowest point of the error, and we can do this using a gradient

(by taking the derivative of error).

 So, if we use a method that allows us to reach different directions, we can get rid

of the local minima, right? If we use a noisy gradient, a gradient that points in

different directions, rather than in one direction, our problem is solved.

 This is called stochastic gradient descent (SGD) or batch gradient, by using

SGD we avoid the local minima and reach better minima.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

7. Heuristics for faster training

 A heuristic is a technique that is used to solve a problem faster than the classic

methods. These techniques are used to find the approximate solution of a

problem when classical methods do not. Heuristics are said to be the problem-

solving techniques that result in practical and quick solutions.

 Heuristics are strategies that are derived from past experience with similar

problems. Heuristics use practical methods and shortcuts used to produce the

solutions that may or may not be optimal, but those solutions are sufficient in

a given limited timeframe.

 Heuristics are used in situations in which there is the requirement of a short-

term solution. On facing complex situations with limited resources and time,

Heuristics can help the companies to make quick decisions by shortcuts and

approximated calculations. Most of the heuristic methods involve mental

shortcuts to make decisions on past experiences.

 The heuristic method might not always provide us the finest solution, but it is

assured that it helps us find a good solution in a reasonable time.

 Based on context, there can be different heuristic methods that correlate with

the problem's scope. The most common heuristic methods are - trial and error,

guesswork, the process of elimination, historical data analysis. These methods

involve simply available information that is not particular to the problem but is

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

most appropriate. They can include representative, affect, and availability

heuristics Direct Heuristic Search techniques in AI

 It includes Blind Search, Uninformed Search, and Blind control strategy. These

search techniques are not always possible as they require much memory and

time. These techniques search the complete space for a solution and use the

arbitrary ordering of operations.

 The examples of Direct Heuristic search techniques include Breadth-First

Search (BFS) and Depth First Search (DFS).

 Weak Heuristic Search techniques in AI. It includes Informed Search, Heuristic

Search, and Heuristic control strategy. These techniques are helpful when they

are applied properly to the right types of tasks. They usually require domain-

specific information.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 The examples of Weak Heuristic search techniques include Best First Search

(BFS) and A*. Before describing certain heuristic techniques, let's see some of

the techniques listed below:

Bidirectional Search

A* search

Simulated Annealing

Hill Climbing

Best First search

Beam search

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

8. Nesterov momentum

 Nesterov Momentum is an extension to the gradient descent optimization

algorithm.

 The approach was described by (and named for) Yurii Nesterov in his 1983

paper titled “A Method For Solving The Convex Programming Problem With

Convergence Rate O(1/k^2).”

 Ilya Sutskever, et al. are responsible for popularizing the application of

Nesterov Momentum in the training of neural networks with stochastic gradient

descent described in their 2013 paper “On The Importance Of Initialization

And Momentum In Deep Learning.” They referred to the approach as

“Nesterov’s Accelerated Gradient,” or NAG for short.

 Nesterov Momentum is just like more traditional momentum except the update

is performed using the partial derivative of the projected update rather than the

derivative current variable value, Traditional momentum involves maintaining

an additional variable that represents the last update performed to the variable,

an exponentially decaying moving average of past gradients.

 This last update or last change to the variable is then added to the variable

scaled by a “momentum” hyperparameter that controls how much of the last

change to add, e.g. 0.9 for 90%.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 It is easier to think about this update in terms of two steps, e.g calculate the

change in the variable using the partial derivative then calculate the new value

for the variable.

 change(t+1) = (momentum * change(t)) – (step_size * f'(x(t))) x(t+1) = x(t) +

change(t+1) We can think of momentum in terms of a ball rolling downhill that

will accelerate and continue to go in the same direction even in the presence of

small hills.

 A problem with momentum is that acceleration can sometimes cause the search

to overshoot the minima at the bottom of a basin or valley floor.

 Nesterov Momentum can be thought of as a modification to momentum to

overcome this problem of overshooting the minima.

 It involves first calculating the projected position of the variable using the

change from the last iteration and using the derivative of the projected position

in the calculation of the new position for the variable.

 Calculating the gradient of the projected position acts like a correction factor

for the acceleration that has been accumulated.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Nesterov Momentum is easy to think about this in terms of the four steps:

 Project the position of the solution.

 Calculate the gradient of the projection.

 Calculate the change in the variable using the partial derivative.

 Update the variable.

 Let’s go through these steps in more detail.

 First, the projected position of the entire solution is calculated using the change

calculated in the last iteration of the algorithm.

 projection(t+1) = x(t) + (momentum * change(t))

 We can then calculate the gradient for this new position.

 gradient(t+1) = f'(projection(t+1))

 Now we can calculate the new position of each variable using the gradient of

the projection, first by calculating the change in each variable.

 change(t+1) = (momentum * change(t)) – (step_size * gradient(t+1))

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 And finally, calculating the new value for each variable using the calculated

change.

 x(t+1) = x(t) + change(t+1)

 In the field of convex optimization more generally, Nesterov Momentum is

known to improve the rate of convergence of the optimization algorithm e.g.

reduce the number of iterations required to find the solution

 The simplest solution is to use other activation functions, such as ReLU, which

doesn't cause a small derivative. Residual networks are another solution, as

they provide residual connections straight to earlier layers.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

9. Bias in Machine Learning?

 Bias takes many different forms and impact all groups of people. It can range

from implicit to explicit and is often very difficult to detect. In the field of

machine learning bias is often subtle and hard to identify, let alone solve. Why

is this a problem? Implicit bias in machine learning has very real consequences

including denial of a loan, a lengthier prison sentence, and many other harmful

outcomes for underprivileged groups.

 The data scientists designing models and the computers running them may not

be explicitly biased against a particular group, so how does bias enter the

picture? Whether it is along lines of race, gender, religion, sexual orientation,

or other forms of identification there are correlations between groups and

factors contributing to unfavorable outcomes.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 This is the classic correlation vs. causation issue and has real-world

consequences for the groups of people who fall victim to this paradigm.

MLFairnessPipeline serves two purposes:

1. Detect bias against underprivileged groups

 2. Mitigate bias against underprivileged groups and provide more equitable and

fair predictions without sacrificing performance and classification accuracy

ML Fairness Pipeline is an end-to-end machine learning pipeline with the three following

stages:

Pre-processing — Factor re-weighting

In-processing — Adversarial debiasing neural network

 Post-processing — Reject Option Based Classification

 MLFairnessPipeline roots out bias in each of the three stages above. A

protected attribute is used to split data into privileged and underprivileged

groups. This attribute can be essentially any feature but most common use

cases are for race and gender. The pipeline maintains accuracy and

performance while at the same time mitigating bias.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 A good example use case of this split would be to design models determining

prison sentence length. When determining the length of a prison sentence the

individual’s likelihood of re-committing a crime is calculated and weighed

very heavily.

 Due to systemic racial bias, minorities are often predicted to be more likely

to re-commit a crime so if we were to try to mitigate bias in this case we would

use “race” as our protected attribute and identify African Americans and

Hispanics as the underprivileged group and Caucasians as the privileged

group because they often receive more favorable outcomes and preferential

treatment.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Pre-processing

 Before the model is trained and after our protected attribute and groups are

selected, features are re-weighted in favor of the underprivileged group to

give them a boost before training a model even begins.

 In the use case above, Caucasians are about 10–15% more likely to receive a

favorable outcome than minorities when being assessed on likelihood of re-

committing a crime. After re-weighting, this 10–15% difference in favorable

outcomes is reduced to 0.

In-processing

 After pre-processing, we move on to the in-processing stage where the

learning takes place and we build our model. MLFairnessPipeline then builds

a neural network using TensorFlow and leverages adversarial debiasing. This

actually entails two models: one specified by the user to try to predict a

specified outcome from a set of features and a second adversarial model to try

and predict the protected attribute based on the outcome of the trained model.

SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE –35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 What this does is ensure a one-way relationship between the protected

attribute and the outcome, ensuring that the protected attribute cannot be

guessed based on the outcome.

 By breaking the link between the protected attribute and outcome we are

ensuring a more equal set of outcomes across both favorable and unfavorable

groups.

