
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING
I YEAR - I SEM

UNIT 4 – FUNCTIONS AND POINTERS

TOPIC 1 – Definition of Function

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

222/21

INTRODUCTION

 The strengths of C language is C functions.

 They are easy to define and use.

 We have used functions in every program that we have discussed so far.

 However, they have been primarily limited to the three functions, namely

main, printf, and scanf.

 C functions can be classified into two categories, namely, library functions and user-

defined functions.

 main is an example of user-defined functions.

 printf and scanf belong to the category of library functions.

 The main distinction between these two categories is that library functions are not required to

be written by us.

 Whereas a user-defined function has to be developed by the user at the time of writing a

program.

 However, a user-defined function can later become a part of the C program library.

 In fact, this is one of the strengths of C language.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

333/21

NEED FOR USER-DEFINED FUNCTIONS

 Every program must have a main function to indicate where the program has to

begin its execution.

While it is possible to code any program utilizing only main function, it leads to a

number of problems.

 The program may become too large and complex and as a result the task of

debugging, testing, and maintaining becomes difficult.

 If a program is divided into functional parts, then each part may be independently

coded and later combined into a single unit.

 These independently coded programs are called subprograms that are much easier

to understand, debug, and test.

 In C, such subprograms are referred to as ‘functions’.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

444/21

NEED FOR USER-DEFINED FUNCTIONS

 There are times when certain type of operations or calculations are repeated at

many points throughout a program.

 For instance, we might use the factorial of a number at several points in the

program.

 In such situations, we may repeat the program statements wherever they are

needed.

Another approach is to design a function that can be called and used whenever

required.

 This saves both time and space.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

555/21

MODULAR DIVISION

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

666/21

NEED FOR USER-DEFINED FUNCTIONS

 This “division” approach clearly results in a number of advantages.

 1. It facilitates top-down modular programming as shown in Fig.

 In this programming style, the high level logic of the overall problem is solved first

while the details of each lower-level function are addressed later.

 2. The length of a source program can be reduced by using functions at

appropriate places.

 3. It is easy to locate and isolate a faulty function for further investigations.

 4. A function may be used by many other programs. This means that a C

programmer can build on what others have already done, instead of starting all over

again from scratch.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

777/21

A MULTI-FUNCTION PROGRAM

A function is a self-contained block of code that performs a particular task.

Once a function has been designed and packed, it can be treated as a ‘black box’

that takes some data from the main program and returns a value.

 The inner details of operation are invisible to the rest of the program.

All that the program knows about a function is: What goes in and what comes out.

 Every C program can be designed using a collection of these black boxes known as

functions.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

888/21

FUNCTIONS - Example

void printline(void); /* declaration */

main()

{

printline();

printf(“This illustrates the use of C functions\n”);

printline();

}

void printline(void)

{

int i;

for(i=1; i<40; i++)

printf(“–”);

printf(“\n”);

}

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

999/21

FUNCTIONS - Example

 The above set of statements defines a function called printline, which could print a line of 39-

character Length.

 The above program contains two user-defined functions:

 main() function & printline() function

 As we know, the program execution always begins with the main function.

 During execution of the main, the first statement encountered is printline();

 which indicates that the function printline is to be executed.

 At this point, the program control is transferred to the function printline.

 After executing the printline function, which outputs a line of 39 character length, the control

is transferred back to the main.

 Now, the execution continues at the point where the function call was executed.

 After executing the printf statement, the control is again transferred to the printline function

for printing the line once more.

 The main function calls the user-defined printline function two times and the library function

printf once.

 We may notice that the printline function itself calls the library function printf 39 times

repeatedly.
Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

101010/21

FUNCTION TRANSFER

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

111111/21

MODULAR PROGRAMMING

Any function can call any other function.

 In fact, it can call itself.

A ‘called function’ can also call another function.

A function can be called more than once.

 In fact, this is one of the main features of using functions.

 Figure illustrates the flow of control in a multi-function program.

 Except the starting point, there are no other predetermined relationships, rules of

precedence, or hierarchies among the functions that make up a complete program.

 The functions can be placed in any order.

A called function can be placed either before or after the calling function.

However, it is the usual practice to put all the called functions at the end.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

121212/21

MODULAR PROGRAMMING

Modular programming is a strategy applied to the design and development of

software systems.

 It is defined as organizing a large program into small, independent program

segments called modules that are separately named and individually callable

program units.

 These modules are carefully integrated to become a software system that satisfies

the system requirements.

 It is basically a “divide-and-conquer” approach to problem solving.

Modules are identified and designed such that they can be organized into a top-

down hierarchical structure (similar to an organization chart).

 In C, each module refers to a function that is responsible for a single task.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

131313/21

CHARACTERISTICS OF MODULAR PROGRAMMING

 1. Each module should do only one thing.

 2. Communication between modules is allowed only by a calling module.

 3. A module can be called by one and only one higher module.

 4. No communication can take place directly between modules that do not have

calling – called relationship.

 5. All modules are designed as single-entry, single-exit systems using control

structures.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

141414/21

ELEMENTS OF USER-DEFINED FUNCTIONS

We have discussed and used a variety of data types and variables in our programs so

far.

However, declaration and use of these variables were primarily done inside the

main function.

As mentioned, functions are classified as one of the derived data types in C.

We can therefore define functions and use them like any other variables in C

programs.

 It is therefore not a surprise to note that there exist some similarities between

functions and variables in C. They are

 Both function names and variable names are considered identifiers and therefore,

they must adhere to the rules for identifiers.

 Like variables, functions have types (such as int) associated with them.

 Like variables, function names and their types must be declared and defined before

they are used in a program

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

151515/21

ELEMENTS OF USER-DEFINED FUNCTIONS

 In order to make use of a user-defined function, we need to establish three elements

that are related to functions.

 1. Function definition.

 2. Function call.

 3. Function declaration.

 The function definition is an independent program module that is specially written

to implement the requirements of the function.

 In order to use this function we need to invoke it at a required place in the program.

 This is known as the function call.

 The program (or a function) that calls the function is referred to as the calling

program or calling function.

 The calling program should declare any function (like declaration of a variable) that

is to be used later in the program.

 This is known as the function declaration or function prototype.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

161616/21

DEFINITION OF FUNCTIONS

A function definition, also known as function implementation shall include the

following elements:

1. function name;

2. function type;

3. list of parameters;

4. local variable declarations;

5. function statements; and

6. a return statement.

All the six elements are grouped into two parts, namely,

function header (First three elements); and

function body (Second three elements).

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

171717/21

DEFINITION OF FUNCTIONS

 A general format of a function definition to implement these two parts is given below:

function_type function_name(parameter list)

{

local variable declaration;

executable statement1;

executable statement2;

.

.

return statement;

}

• The first line function_type function_name(parameter list) is known as the function header

and the statements within the opening and closing braces constitute the function body, which

is a compound statement.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT15/02/2021

181818/21

DEFINITION OF FUNCTIONS

 Function Header

 The function header consists of three parts:

the function type (also known as return type)

the function name

the formal parameter list.

 Note that a semicolon is not used at the end of the function header.

 Name and Type

 The function type specifies the type of value (like float or double) that the function is

expected to return to the program calling the function.

 If the return type is not explicitly specified, C will assume that it is an integer type.

 If the function is not returning anything, then we need to specify the return type as void.

 The value returned is the output produced by the function.

 The function name is any valid C identifier and therefore must follow the same rules of

formation as other variable names in C.

 The name should be appropriate to the task performed by the function.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

191919/21

DEFINITION OF FUNCTIONS

 Formal Parameter List

 The parameter list declares the variables that will receive the data sent by the calling program.

 They serve as input data to the function to carry out the specified task.

 Since they represent the actual input values, they are often referred to as formal parameters.

 These parameters can also be used to send values to the calling programs.

 The parameters are also known as arguments.

 The parameter list contains declaration of variables separated by commas and surrounded by

parentheses.

 Examples:

float quadratic (int a, int b, int c) {. . . . }

double power (double x, int n) {.}

float mul (float x, float y) {. . . . }

int sum (int a, int b) {. . . . }

 Remember, there is no semicolon after the closing parenthesis.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

202020/21

DEFINITION OF FUNCTIONS

Note that the declaration of parameter variables cannot be combined.

 That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program.

 In such cases, functions have no formal parameters.

 To indicate that the parameter list is empty, we use the keyword void between the

parentheses as in void printline (void)

void printline (void)

{

. . . .

}

 This function neither receives any input values nor returns back any value.

Many compilers accept an empty set of parentheses, without specifying anything

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

212121/21

DEFINITION OF FUNCTIONS

 Function Body

 The function body contains the declarations and statements necessary for performing the

required task.

 The body enclosed in braces, contains three parts, in the order given below:

1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

 If a function does not return any value (like the printline function), we can omit the return

statement.

 However, note that its return type should be specified as void.

 Again, it is nice to have a return statement even for void functions.

 Some examples of typical function definitions are:

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

222222/21

FUNCTION DEFINITION - Example

(a) float mul (float x, float y)

{

float result; /* local variable */

result = x * y; /* computes the product */

return (result); /* returns the result */

}

(b) void sum (int a, int b)

{

printf (“sum = %s”, a + b); /* no local variables */

return; /* optional */

}

(c) void display (void)

{

/* no local variables */

printf (“No type, no parameters”);

/* no return statement */

}
Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

232323/21

RETURN VALUES AND THEIR TYPES

 As pointed out earlier, a function may or may not send back any value to the calling function.

 If it does, it is done through the return statement.

 While it is possible to pass to the called function any number of values, the called function can

only return one value per call, at the most.

 The return statement can take one of the following forms:

return;

or

return(expression);

 The first, the ‘plain’ return does not return any value; it acts much as the closing brace of the

function.

 When a return is encountered, the control is immediately passed back to the calling function.

 An example of the use of a simple return is as follows:

if(error)

return;

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

242424/21

RETURN VALUES AND THEIR TYPES

 The second form of return with an expression returns the value of the expression.

 For example, the function

int mul (int x, int y)

{

int p;

p = x*y;

return(p);

}

 returns the value of p which is the product of the values of x and y.

 The last two statements can be combined into one statement as follows:

return (x*y);

 A function may have more than one return statements

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

252525/21

RETURN VALUES AND THEIR TYPES

 The above situation arises when the value returned is based on certain conditions.

 For example:

if(x <= 0)

return(0);

else

return(1);

 What type of data does a function return? All functions by default return int type data.

 But what happens if a function must return some other type? We can force a function to return

a particular type of data by using a type specifier in the function header as discussed earlier.

 When a value is returned, it is automatically cast to the function’s type.

 In functions that do computations using doubles, yet return ints, the returned value will be

truncated to an integer.

 For instance, the function will return the value 7, only the integer part of the result.

int product (void)

{

return (2.5 * 3.0);

}
Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

