
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING
I YEAR - I SEM

UNIT 4 – FUNCTIONS AND POINTERS

TOPIC 1 – Definition of Function

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

222/21

INTRODUCTION

 The strengths of C language is C functions.

 They are easy to define and use.

 We have used functions in every program that we have discussed so far.

 However, they have been primarily limited to the three functions, namely

main, printf, and scanf.

 C functions can be classified into two categories, namely, library functions and user-

defined functions.

 main is an example of user-defined functions.

 printf and scanf belong to the category of library functions.

 The main distinction between these two categories is that library functions are not required to

be written by us.

 Whereas a user-defined function has to be developed by the user at the time of writing a

program.

 However, a user-defined function can later become a part of the C program library.

 In fact, this is one of the strengths of C language.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

333/21

NEED FOR USER-DEFINED FUNCTIONS

 Every program must have a main function to indicate where the program has to

begin its execution.

While it is possible to code any program utilizing only main function, it leads to a

number of problems.

 The program may become too large and complex and as a result the task of

debugging, testing, and maintaining becomes difficult.

 If a program is divided into functional parts, then each part may be independently

coded and later combined into a single unit.

 These independently coded programs are called subprograms that are much easier

to understand, debug, and test.

 In C, such subprograms are referred to as ‘functions’.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

444/21

NEED FOR USER-DEFINED FUNCTIONS

 There are times when certain type of operations or calculations are repeated at

many points throughout a program.

 For instance, we might use the factorial of a number at several points in the

program.

 In such situations, we may repeat the program statements wherever they are

needed.

Another approach is to design a function that can be called and used whenever

required.

 This saves both time and space.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

555/21

MODULAR DIVISION

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

666/21

NEED FOR USER-DEFINED FUNCTIONS

 This “division” approach clearly results in a number of advantages.

 1. It facilitates top-down modular programming as shown in Fig.

 In this programming style, the high level logic of the overall problem is solved first

while the details of each lower-level function are addressed later.

 2. The length of a source program can be reduced by using functions at

appropriate places.

 3. It is easy to locate and isolate a faulty function for further investigations.

 4. A function may be used by many other programs. This means that a C

programmer can build on what others have already done, instead of starting all over

again from scratch.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

777/21

A MULTI-FUNCTION PROGRAM

A function is a self-contained block of code that performs a particular task.

Once a function has been designed and packed, it can be treated as a ‘black box’

that takes some data from the main program and returns a value.

 The inner details of operation are invisible to the rest of the program.

All that the program knows about a function is: What goes in and what comes out.

 Every C program can be designed using a collection of these black boxes known as

functions.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

888/21

FUNCTIONS - Example

void printline(void); /* declaration */

main()

{

printline();

printf(“This illustrates the use of C functions\n”);

printline();

}

void printline(void)

{

int i;

for(i=1; i<40; i++)

printf(“–”);

printf(“\n”);

}

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

999/21

FUNCTIONS - Example

 The above set of statements defines a function called printline, which could print a line of 39-

character Length.

 The above program contains two user-defined functions:

 main() function & printline() function

 As we know, the program execution always begins with the main function.

 During execution of the main, the first statement encountered is printline();

 which indicates that the function printline is to be executed.

 At this point, the program control is transferred to the function printline.

 After executing the printline function, which outputs a line of 39 character length, the control

is transferred back to the main.

 Now, the execution continues at the point where the function call was executed.

 After executing the printf statement, the control is again transferred to the printline function

for printing the line once more.

 The main function calls the user-defined printline function two times and the library function

printf once.

 We may notice that the printline function itself calls the library function printf 39 times

repeatedly.
Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

101010/21

FUNCTION TRANSFER

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

111111/21

MODULAR PROGRAMMING

Any function can call any other function.

 In fact, it can call itself.

A ‘called function’ can also call another function.

A function can be called more than once.

 In fact, this is one of the main features of using functions.

 Figure illustrates the flow of control in a multi-function program.

 Except the starting point, there are no other predetermined relationships, rules of

precedence, or hierarchies among the functions that make up a complete program.

 The functions can be placed in any order.

A called function can be placed either before or after the calling function.

However, it is the usual practice to put all the called functions at the end.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

121212/21

MODULAR PROGRAMMING

Modular programming is a strategy applied to the design and development of

software systems.

 It is defined as organizing a large program into small, independent program

segments called modules that are separately named and individually callable

program units.

 These modules are carefully integrated to become a software system that satisfies

the system requirements.

 It is basically a “divide-and-conquer” approach to problem solving.

Modules are identified and designed such that they can be organized into a top-

down hierarchical structure (similar to an organization chart).

 In C, each module refers to a function that is responsible for a single task.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

131313/21

CHARACTERISTICS OF MODULAR PROGRAMMING

 1. Each module should do only one thing.

 2. Communication between modules is allowed only by a calling module.

 3. A module can be called by one and only one higher module.

 4. No communication can take place directly between modules that do not have

calling – called relationship.

 5. All modules are designed as single-entry, single-exit systems using control

structures.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

141414/21

ELEMENTS OF USER-DEFINED FUNCTIONS

We have discussed and used a variety of data types and variables in our programs so

far.

However, declaration and use of these variables were primarily done inside the

main function.

As mentioned, functions are classified as one of the derived data types in C.

We can therefore define functions and use them like any other variables in C

programs.

 It is therefore not a surprise to note that there exist some similarities between

functions and variables in C. They are

 Both function names and variable names are considered identifiers and therefore,

they must adhere to the rules for identifiers.

 Like variables, functions have types (such as int) associated with them.

 Like variables, function names and their types must be declared and defined before

they are used in a program

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

151515/21

ELEMENTS OF USER-DEFINED FUNCTIONS

 In order to make use of a user-defined function, we need to establish three elements

that are related to functions.

 1. Function definition.

 2. Function call.

 3. Function declaration.

 The function definition is an independent program module that is specially written

to implement the requirements of the function.

 In order to use this function we need to invoke it at a required place in the program.

 This is known as the function call.

 The program (or a function) that calls the function is referred to as the calling

program or calling function.

 The calling program should declare any function (like declaration of a variable) that

is to be used later in the program.

 This is known as the function declaration or function prototype.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

161616/21

DEFINITION OF FUNCTIONS

A function definition, also known as function implementation shall include the

following elements:

1. function name;

2. function type;

3. list of parameters;

4. local variable declarations;

5. function statements; and

6. a return statement.

All the six elements are grouped into two parts, namely,

function header (First three elements); and

function body (Second three elements).

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

171717/21

DEFINITION OF FUNCTIONS

 A general format of a function definition to implement these two parts is given below:

function_type function_name(parameter list)

{

local variable declaration;

executable statement1;

executable statement2;

.

.

return statement;

}

• The first line function_type function_name(parameter list) is known as the function header

and the statements within the opening and closing braces constitute the function body, which

is a compound statement.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT15/02/2021

181818/21

DEFINITION OF FUNCTIONS

 Function Header

 The function header consists of three parts:

the function type (also known as return type)

the function name

the formal parameter list.

 Note that a semicolon is not used at the end of the function header.

 Name and Type

 The function type specifies the type of value (like float or double) that the function is

expected to return to the program calling the function.

 If the return type is not explicitly specified, C will assume that it is an integer type.

 If the function is not returning anything, then we need to specify the return type as void.

 The value returned is the output produced by the function.

 The function name is any valid C identifier and therefore must follow the same rules of

formation as other variable names in C.

 The name should be appropriate to the task performed by the function.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

191919/21

DEFINITION OF FUNCTIONS

 Formal Parameter List

 The parameter list declares the variables that will receive the data sent by the calling program.

 They serve as input data to the function to carry out the specified task.

 Since they represent the actual input values, they are often referred to as formal parameters.

 These parameters can also be used to send values to the calling programs.

 The parameters are also known as arguments.

 The parameter list contains declaration of variables separated by commas and surrounded by

parentheses.

 Examples:

float quadratic (int a, int b, int c) {. . . . }

double power (double x, int n) {.}

float mul (float x, float y) {. . . . }

int sum (int a, int b) {. . . . }

 Remember, there is no semicolon after the closing parenthesis.

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

202020/21

DEFINITION OF FUNCTIONS

Note that the declaration of parameter variables cannot be combined.

 That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program.

 In such cases, functions have no formal parameters.

 To indicate that the parameter list is empty, we use the keyword void between the

parentheses as in void printline (void)

void printline (void)

{

. . . .

}

 This function neither receives any input values nor returns back any value.

Many compilers accept an empty set of parentheses, without specifying anything

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

212121/21

DEFINITION OF FUNCTIONS

 Function Body

 The function body contains the declarations and statements necessary for performing the

required task.

 The body enclosed in braces, contains three parts, in the order given below:

1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

 If a function does not return any value (like the printline function), we can omit the return

statement.

 However, note that its return type should be specified as void.

 Again, it is nice to have a return statement even for void functions.

 Some examples of typical function definitions are:

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

222222/21

FUNCTION DEFINITION - Example

(a) float mul (float x, float y)

{

float result; /* local variable */

result = x * y; /* computes the product */

return (result); /* returns the result */

}

(b) void sum (int a, int b)

{

printf (“sum = %s”, a + b); /* no local variables */

return; /* optional */

}

(c) void display (void)

{

/* no local variables */

printf (“No type, no parameters”);

/* no return statement */

}
Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

232323/21

RETURN VALUES AND THEIR TYPES

 As pointed out earlier, a function may or may not send back any value to the calling function.

 If it does, it is done through the return statement.

 While it is possible to pass to the called function any number of values, the called function can

only return one value per call, at the most.

 The return statement can take one of the following forms:

return;

or

return(expression);

 The first, the ‘plain’ return does not return any value; it acts much as the closing brace of the

function.

 When a return is encountered, the control is immediately passed back to the calling function.

 An example of the use of a simple return is as follows:

if(error)

return;

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

242424/21

RETURN VALUES AND THEIR TYPES

 The second form of return with an expression returns the value of the expression.

 For example, the function

int mul (int x, int y)

{

int p;

p = x*y;

return(p);

}

 returns the value of p which is the product of the values of x and y.

 The last two statements can be combined into one statement as follows:

return (x*y);

 A function may have more than one return statements

Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

252525/21

RETURN VALUES AND THEIR TYPES

 The above situation arises when the value returned is based on certain conditions.

 For example:

if(x <= 0)

return(0);

else

return(1);

 What type of data does a function return? All functions by default return int type data.

 But what happens if a function must return some other type? We can force a function to return

a particular type of data by using a type specifier in the function header as discussed earlier.

 When a value is returned, it is automatically cast to the function’s type.

 In functions that do computations using doubles, yet return ints, the returned value will be

truncated to an integer.

 For instance, the function will return the value 7, only the integer part of the result.

int product (void)

{

return (2.5 * 3.0);

}
Functions/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

