Unit III - Database Design

Dependencies and Normal forms - Functional Dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers-Non- loss decomposition-

First,Second,Third Normal Forms, Dependency Preservation-Boyce/Codd Normal
Form-Multivalued Dependencies and Fourth Normal Form- Join Dependencies and
Fifth Normal Form

Dependencies in DBMS is a relation between two or more attributes.
1.Trivial functional dependency
2.Non-Trivial functional dependency
3.Multivalued functional dependency
4.Transitive functional dependency

Trivial functional dependency

- In Trivial Functional Dependency, a dependent is always a subset of the determinant.

If $\mathbf{X} \rightarrow \mathbf{Y}$ and \mathbf{Y} is the subset of \mathbf{X}, then it is called trivial functional dependency

- Example

Trivial functional dependency

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

\{roll_no, name $\} \rightarrow$ name is a trivial functional dependency, since the dependent name is a subset of determinant set \{roll_no, name\}

Similarly, roll_no \rightarrow roll_no is also an example of trivial functional dependency.

Non Trivial functional dependency

- In Non-trivial functional dependency, the dependent is strictly not a subset of the determinant.

If $\mathbf{X} \rightarrow \mathbf{Y}$ and \mathbf{Y} is not a subset of \mathbf{X}, then it is called Non-trivial functional dependency.

- Example

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

roll_no \rightarrow name is a non-trivial functional dependency, since the dependent name is not a subset of determinant roll_no

Similarly, \{roll_no, name\} \rightarrow age is also a non-trivial functional dependency, since age is not a subset of \{roll_no, name\}

Multivalued functional dependency

- Multivalued functional dependency, entities of the dependent set are not dependent on each other.
- If $\mathbf{a} \rightarrow\{\mathbf{b}, \mathbf{c}\}$ and there exists no functional dependency between \mathbf{b} and c, then it is called a multivalued functional dependency.
- Example

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18
45	abc	19

roll_no \rightarrow \{name, age\} is a multivalued functional dependency, since the
dependents name \& age are not dependent on each other(i.e. name \rightarrow age or age \rightarrow name doesn't exist !)

Transitive Functional dependency

- In transitive functional dependency, dependent is indirectly dependent on determinant.
- If $\mathbf{a} \rightarrow \mathbf{b} \& \mathbf{b} \rightarrow \mathbf{c}$, then according to axiom of transitivity, $\mathbf{a} \rightarrow \mathbf{c}$. This is a transitive functional dependency

Transitive functional dependency

Example

enrol_no	name	dept	building_no
42	abc	CO	4
43	pqr	EC	2
44	xyz	IT	1
45	abc	EC	2

enrol_no \rightarrow dept and dept \rightarrow building_no, Hence, according to the axiom of
transitivity, enrol_no \rightarrow building_no is a valid functional dependency. This is an indirect functional dependency, hence called Transitive functional dependency.

Armstrong's axioms for FD's

Primary
\checkmark Axiom of reflexivity
\checkmark Axiom of augmentation
\checkmark Axiom of transitivity

Secondary

\checkmark Union
\checkmark Composition
\checkmark Decomposition
\checkmark Pseudo Transitivity

Axiom of reflexivity

- if Y is a subset of X , then X determines Y .
- If $X \supseteq Y$ then $X \rightarrow Y$
- $X \rightarrow X$

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	B	60	EE	C1
3	A	78	CE	C2
4	B	60	EE	C3
5	C	80	IT	C2

Axiom of Transitivity

- if X determines Y and Y determine Z , then X must also determine Z .
- If $X \rightarrow Y$ and $Y \rightarrow Z$
then $X \rightarrow Z$
Ram is sibling of Sham Sham is sibling of Mohan

Ram is sibling of Mohan

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	B	60	EE	C1
3	A	78	CE	C2
4	B	60	EE	C3
5	C	80	IT	C2

Name \rightarrow Marks and Marks \rightarrow Dept then name \rightarrow Marks

Axiom of Augmentation

- The augmentation is also called as a partial dependency.
- In augmentation, if X determines Y, then XZ determines YZ for any Z.
- If $X \rightarrow Y$ then $X Z \rightarrow Y Z$
R.No $\quad \rightarrow$ Name then
R.No, Marks \rightarrow Name, marks

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	B	60	EE	C1
3	A	78	CE	C2
4	B	60	EE	C3
5	C	80	IT	C2

- If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow Y Z$
R.No \rightarrow Name and R.No \rightarrow Marks
R.No \rightarrow Name, marks

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	B	60	EE	C1
3	A	78	CE	C2
4	B	60	EE	C3
5	C	80	IT	C2

- Decomposition rule is also known as project rule. It is the reverse of union rule.
- if X determines Y and Z , then X determines Y and X determines Z separately.
- If $\mathrm{X} \rightarrow \mathrm{YZ}$ Then $\mathrm{X} \rightarrow \mathrm{Y}$ then $\mathrm{X} \rightarrow \mathrm{Z}$

Name, Marks \rightarrow Dept, Course then
Name, Marks \rightarrow Dept and
Name, Marks \rightarrow Dept, Course

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	B	60	EE	C1
3	A	78	CE	C2
4	B	60	EE	C3
5	C	80	IT	C2

- if X determines Y and YZ determines W , then XZ determines W .
- If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{YZ} \rightarrow \mathrm{W}$ then $\mathrm{XZ} \rightarrow \mathrm{W}$

	R.No	Name	Marks	Dept	Course
Roll No \rightarrow Name, and	1	A	78	CS	C1
Name, Marks \rightarrow Dept	2	B	60	EE	C1
Then	3	A	78	CE	C2
Roll No, Marks \rightarrow Dept	4	B	60	EE	C3

Secondary Rules
 Axiom of Composition

- If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{A} \rightarrow \mathrm{B}$ then $\mathrm{XA} \rightarrow \mathrm{YB}$

Roll No \rightarrow Name, and	R.No	Name	Marks	Dept	Course
Marks \rightarrow Dept	1	A	78	CS	C1
Then	2	B	60	EE	C1
Roll No, Marks \rightarrow Name, Dept	3	A	78	CE	C2
	4	B	60	EE	C3

