Unit III – Database Design

Dependencies and Normal forms - Functional Dependencies, **Armstrong's axioms for FD's,** closure of a set of FD's, minimal covers-Non- loss decomposition-First,Second,Third Normal Forms, Dependency Preservation-Boyce/Codd Normal Form-Multivalued Dependencies and Fourth Normal Form- Join Dependencies and **F**ifth Normal Form

Dependencies in DBMS is a relation between two or more attributes.

1. Trivial functional dependency

2.Non-Trivial functional dependency

3. Multivalued functional dependency

4. Transitive functional dependency

A.Aruna / AP / IT / SEM 4 / DBMS

• In **Trivial Functional Dependency**, a dependent is always a subset of the determinant.

If $X \rightarrow Y$ and Y is the subset of X, then it is called trivial functional dependency

A.Aruna / AP / IT / SEM 4 / DBMS

NSTITUTION

16-03-2023

3/19

Trivial functional dependency

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

• Example

{roll_no, name} → name is a trivial functional dependency, since the
dependent name is a subset of determinant set {roll_no, name}
Similarly, roll_no → roll_no is also an example of trivial functional dependency.

• In **Non-trivial functional dependency**, the dependent is strictly not a subset of the determinant.

If $X \rightarrow Y$ and Y is not a subset of X, then it is called Non-trivial functional

dependency.

A.Aruna / AP / IT / SEM 4 / DBMS

Non Trivial functional dependency

roll_	no	name	age
42		abc	17
43		pqr	18
44		xyz	18

• Example

roll_no → name is a non-trivial functional dependency, since the dependent name is not
a subset of determinant roll_no
Similarly, {roll_no, name} → age is also a non-trivial functional dependency,
since age is not a subset of {roll_no, name}

A.Aruna / AP / IT / SEM 4 / DBMS

• **Multivalued functional dependency**, entities of the dependent set are **not dependent on each other.**

If a → {b, c} and there exists no functional dependency between b and
 c, then it is called a multivalued functional dependency.

Multivalued functional dependency

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18
45	abc	19

• Example

roll_no → {**name, age**} is a multivalued functional dependency, since the

dependents **name** & **age** are **not dependent** on each other(i.e. **name** → **age** or **age** →

name doesn't exist !)

A.Aruna / AP / IT / SEM 4 / DBMS

- In transitive functional dependency, dependent is indirectly dependent on determinant.
- If $\mathbf{a} \rightarrow \mathbf{b} \otimes \mathbf{b} \rightarrow \mathbf{c}$, then according to axiom of transitivity, $\mathbf{a} \rightarrow \mathbf{c}$. This is
 - a transitive functional dependency

Transitive functional dependency

enrol_no	name	dept	building_no
42	abc	СО	4
43	pqr	EC	2
44	xyz	IT	1
45	abc	EC	2

enrol_no \rightarrow **dept** and **dept** \rightarrow **building_no**, Hence, according to the axiom of

transitivity, **enrol_no** → **building_no** is a valid functional dependency. This is an indirect

functional dependency, hence called Transitive functional dependency.

A.Aruna / AP / IT / SEM 4 / DBMS

Example

Armstrong's axioms for FD's

Primary

✓ Axiom of reflexivity

✓ Axiom of augmentation

✓ Axiom of transitivity

Secondary

√Union

✓ Composition

✓ Decomposition

✓ Pseudo Transitivity

A.Aruna / AP / IT / SEM 4 / DBMS

16-03-2023

11/19

Primary Rules

12/19

Axiom of reflexivity

- if Y is a subset of X, then X determines Y.
- If $X \supseteq Y$ then $X \rightarrow Y$
- $X \rightarrow X$

R.No	Name	Marks	Dept Course	
1	А	78	CS	C1
2	В	60	EE	C1
3	А	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Primary Rules

13/19

Axiom of Transitivity

- if X determines Y and Y determine Z, then X must also determine Z.
- If $X \rightarrow Y$ and $Y \rightarrow Z$

INSTITUTIONS

then $X \rightarrow Z$

Ram is sibling of Sham Sham is sibling of Mohan

Ram is sibling of Mohan

R.No	Name	Marks	Dept Cours	
1	А	78	CS	C1
2	В	60	EE	C1
3	А	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Name \rightarrow Marks and Marks \rightarrow Dept then name \rightarrow Marks

A.Aruna / AP / IT / SEM 4 / DBMS

- The augmentation is also called as a partial dependency.
- In augmentation, if X determines Y, then XZ determines YZ for any Z.

• If $X \rightarrow Y$ then $XZ \rightarrow YZ$	R.No	Name	Marks	Dept	Course
	1	А	78	CS	C1
R.No \rightarrow Name then	2	В	60	EE	C1
	3	А	78	CE	C2
R.No, Marks \rightarrow Name, marks	4	В	60	EE	C3
	5	С	80	IT	C2

• if X determines Y and X determines Z, then X must also determine Y and Z.

• If $X \to Y$ and $X \to Z$ then $X \to YZ$	R.No	Name	Marks	Dept	Course
	1	А	78	CS	C1
R.No \rightarrow Name and R.No \rightarrow Marks	2	В	60	EE	C1
	3	А	78	CE	C2
R.No → Name, marks	4	В	60	EE	C3
	5	С	80	IT	C2

- Decomposition rule is also known as project rule. It is the reverse of union rule.
- if X determines Y and Z, then X determines Y and X determines Z separately.
- If $X \rightarrow YZ$ Then $X \rightarrow Y$ then $X \rightarrow Z$

Name, Marks→ Dept, Course then Name, Marks→ Dept and Name, Marks→ Dept, Course

R.No	Name	Marks	Dept	Course
1	А	78	CS	C1
2	В	60	EE	C1
3	А	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

- if X determines Y and YZ determines W, then XZ determines W.
- If $X \rightarrow Y$ and $YZ \rightarrow W$ then $XZ \rightarrow W$

Roll No \rightarrow Name, and	1	А
Norse Merles Dort	2	В
Name, Marks→ Dept	3	А
Then	4	В
Roll No, Marks→ Dept	5	С

R.No	Name	Marks	Dept	Course
1	А	78	CS	C1
2	В	60	EE	C1
3	А	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Secondary Rules

Axiom of Composition

• If $X \rightarrow Y$ and $A \rightarrow B$ then $XA \rightarrow YB$

Roll No \rightarrow Name, and
Marks→ Dept
Then
Roll No, Marks→ Name, Dept

R.No	Name	Marks	Dept	Course
1	А	78	CS	C1
2	В	60	EE	C1
3	А	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

18/19

A.Aruna / AP / IT / SEM 4 / DBMS