
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

COURSE NAME : 19CST101 PROGRAMMING FOR PROBLEM SOLVING

I YEAR/ I SEMESTER

UNIT-IV FUNCTIONS AND POINTERS

Topic: Pointers

Ms. Devi G
Assistant Professor

Department of Computer Science and Engineering

 A pointer is a derived data type in C.
 It is built from one of the fundamental data types available in C.
 Pointers contain memory addresses as their values.
 Since these memory addresses are the locations in the computer memory where program

instructions and data are stored, pointers can be used to access and manipulate data stored in the
memory.

 It has added power and flexibility to the language.
 Although they appear little confusing and difficult to understand for a beginner, they are a

powerful tool and handy to use once they are mastered.
 Pointers are used frequently in C, as they offer a number of benefits to the

programmers.

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

Pointers

1. Pointers are more efficient in handling arrays and data tables.
2. Pointers can be used to return multiple values from a function via function arguments.
3. Pointers permit references to functions and thereby facilitating passing of functions

as arguments to other functions.
4. The use of pointer arrays to character strings results in saving of data storage space in

memory.
5. Pointers allow C to support dynamic memory management.
6. Pointers provide an efficient tool for manipulating dynamic data structures such as structures,

linked lists, queues, stacks and trees.
7. Pointers reduce length and complexity of programs.
8. They increase the execution speed and thus reduce the program execution time

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

BENEFITS OF POINTERS

1. The computer’s memory is a sequential
collection of storage cells as shown in
Fig

2. Each cell, commonly known as a byte,
has a number called address associated
with it.

3. Typically, the addresses are numbered
consecutively, starting from zero.

4. The last address depends on the
memory size.

5. A computer system having 64 K
memory will have its last address as
65,535 .

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

UNDERSTANDING POINTERS

 Whenever we declare a variable, the system
allocates, somewhere in the memory, an
appropriate location to hold the value of the
variable.

 Since, every byte has a unique address
number, this location will have its own
address number.

 Consider the following statement
 int quantity = 179;

 This statement instructs the system to
find a location for the integer variable
quantity and puts the value 179 in that
location.

 Let us assume that the system has chosen the
address location 5000 for quantity

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

UNDERSTANDING POINTERS

UNDERSTANDING POINTERS

 During execution of the program, the system always associates the name quantity with the
address 5000.

 (This is something similar to having a house number as well as a house name.)
 We may have access to the value 179 by using either the name quantity or the address

5000.
 Since memory addresses are simply numbers, they can be assigned to some

variables, that can be stored in memory, like any other variable.
 Such variables that hold memory addresses are called pointer variables.
 A pointer variable is, therefore, nothing but a variable that contains an address, which

is a location of another variable in memory.
 Remember, since a pointer is a variable, its value is also stored in the memory in another

location.
 Suppose, we assign the address of quantity to a variable p.
 The link between the variables p and quantity can be visualized as shown in Fig
 The address of p is 5048.

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

UNDERSTANDING POINTERS

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

Pointers

1. Pointers are built on the three underlying concepts as illustrated in fig:
2. Memory addresses within a computer are referred to as pointer constants.
3. We cannot change them; we can only use them to store data values.
4. They are like house numbers.
5. We cannot save the value of a memory address directly.
6. We can only obtain the value through the variable stored there using the address operator

(&).
7. The value thus obtained is known as pointer value.
8. The pointer value (i.e. the address of a variable) may change from one run of the program to

another.
9. Once we have a pointer value, it can be stored into another variable.
10. The variable that contains a pointer value is called a pointer variable.

Pointers / 19CST101-Programming for Problem Solving /Devi G/CSE/SNSCT

ACCESSING THE ADDRESS OF A VARIABLE

 The actual location of a variable in the memory is system dependent and therefore,
the address of a variable is not known to us immediately.

 How can we then determine the address of a variable?
 This can be done with the help of the operator & available in C.
 We have already seen the use of this address operator in the scanf function.
 The operator & immediately preceding a variable returns the address of the variable

associated with it.

 For example, the statement p = &quantity;
 would assign the address 5000 (the location of quantity) to the variable p.
 The & operator can be remembered as ‘address of’.

Pointers / 19CST101-Programming for Problem Solving /Devi GCSE/SNSCT

ACCESSING THE ADDRESS OF A VARIABLE

 The & operator can be used only with a simple variable or an array
element.

 The following are illegal use of address operator:

 1. &125 (pointing at constants).

 2. int x[10];
 &x (pointing at array names).

 3. &(x+y) (pointing at expressions).

	Slide Number 1
	Pointers
	BENEFITS OF POINTERS
	UNDERSTANDING POINTERS
	UNDERSTANDING POINTERS
	UNDERSTANDING POINTERS
	UNDERSTANDING POINTERS
	Pointers
	ACCESSING THE ADDRESS OF A VARIABLE
	ACCESSING THE ADDRESS OF A VARIABLE
	Slide Number 11

